3-Metalla-1,2-dioxolanes and Their Reactivity

Monique Krom, [a] Theo P. J. Peters, [a] Ruud G. E. Coumans, [a] Timo J. J. Sciarone, [a] Johan Hoogboom, [a] Sandra I. ter Beek, [a] Paul P. J. Schlebos, [a] Jan M. M. Smits, [a] René de Gelder, [a] and Anton W. Gal*[a]

Keywords: Formylmethyl complexes / Metallacycles / N ligands / Oxygenations / Rhodium

The ethene complexes $[M^{I}(CH_{2}CH_{2})]^{+}$ (M = Ir, Rh) can be oxygenated by molecular oxygen or air in the solid state, to isolable unsubstituted 3-metalla-1,2-dioxolanes $[M^{III}(CH_2CH_2OO-\kappa^2C^1,O^2)]^+$. Such selectivity could not be achieved in solution. The stereoselectivity of the oxygenation process is highly dependent on the ligand, the metal and the counterion used. Oxygenation of [(tpa)M(CH₂CH₂)]PF₆ $\{tpa = tri(2-pyridylmethyl)amine; 4PF_6, 7PF_6\}$ results in the formation of two isomeric 3-metalladioxolanes, whereas oxygenation of $[(tpa)M(CH_2CH_2)]BPh_4$ (4BPh₄, 7BPh₄) only yields one isomer. Furthermore, oxygenation of [(Metpa)- $Rh(CH_2CH_2)]PF_6$ {14PF₆, Metpa = [(6-methyl-2-pyridyl)methyl]bis(2-pyridylmethyl)amine} proved to be much slower than that of [(tpa)Rh(CH₂CH₂)]PF₆ (**7**PF₆). The solid propene complex [(tpa)Rh(CH₂CHCH₃)]BPh₄ (23BPh₄) loses propene on reaction with molecular oxygen, and selectively forms the peroxo complex $[(tpa)Rh(\eta^2-O_2)]BPh_4$ (24BPh₄). The obtained 3-metalla-1,2-dioxolanes rearrange, both in the solid state and in solution, to formylmethyl hydroxy complexes on exposure to photons or protons. The isomeric 3-rhoda-1,2-dioxolanes [(tpa)Rh(CH₂CH₂OO- κ^2C^1 ,O²)]+ 8a+ and 8b+ differ in reactivity. On exposure of a solution of 8aPF₆/8bPF₆ to glass-filtered daylight, isomer 8b+ rearranges to form the formylmethyl hydroxy complex 9b+. This rearrangement is three times faster than the rearrangement of 8a+ to 9a+. The iridadioxolanes are much more reactive than the corresponding rhodadioxolanes, whereas the iridium formylmethyl hydroxy complexes are less reactive than the corresponding rhodium formylmethyl hydroxy complexes. The tpa formylmethyl hydroxy complexes react reversibly with carbon dioxide to form formylmethyl hydrogen carbonate complexes.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Introduction

Transition metal catalyzed oxidation of olefins is one of the most important methods of converting these readily available and cheap starting materials into useful chemicals. For economical and environmental reasons, molecular oxygen or air are the most interesting oxidants. However, not much is known about the mechanisms involved in transition metal catalyzed olefin oxidations. In an attempt to investigate the validity of some of the earlier proposed mechanisms, we have investigated the oxygenation of rhodium and iridium ethene complexes by air.

3-Metalla-1,2-dioxolanes (κ^2 - C^1 , O^2 -2-peroxyethyl metal complexes, see Structure) have been proposed as intermediates in the catalytic oxygenation of olefins by group VI and VIII metals.^[1] These reactions include

epoxidation^[1d-1f] and oxidation to ketones.^[1a-1c] Mimoun et al. have proposed that the rhodium-catalyzed olefin oxidation proceeds via a peroxo ethene complex. Insertion of ethene into the rhodium dioxygen bond then results in the formation of a 3-rhoda-1,2-dioxolane complex, which subsequently decomposes to acetaldehyde and a rhodium oxo complex (Scheme 1).^[1a]

Scheme 1. Mechanism proposed by Mimoun for the rhodium catalyzed oxidation of ethene to acetaldehyde^[1a]

Department of Inorganic Chemistry, University of Nijmegen Toernooiveld 1, 6525 ED Nijmegen, The Netherlands Fax: (internat.) +31-24355-3450

E-mail: gal@sci.kun.nl
Supporting information for this article is available on the WWW under http://www.eurjic.org or from the author.

In the molybdenum catalyzed oxidation of olefins, Mimoun proposed that decomposition of 3-molybdena-1,2-dioxolanes results in the formation of a molybdenum oxo complex and ethylene oxide.^{[1e][1f]} However, calculations by Frenking et al. have indicated that this would lead to the formation of acetaldehyde instead of ethylene oxide.^[2]

3-Metalla-1,2-dioxolanes containing an *unsubstituted* 3-metalla-1,2-dioxolane fragment [M(κ^2C^I, O^2 -CH₂CH₂OO-)] have not been reported before. However, tri- and tetra-substituted 3-platina-1,2-dioxolanes, with substituents that prevent β -hydrogen transfer, have been obtained from the reaction of [(PPh₃)₂Pt(η^2 -O₂)] with electron-deficient olefins, and have been structurally characterized (1 and 2).^[3] These *substituted* platinadioxolanes cannot be used as models for the further study of proposed metalladioxolane intermediates.

We now report on the synthesis of *unsubstituted* 3-metalla-1,2-dioxolanes, through the oxidation of rhodium and iridium ethene complexes by air or molecular oxygen. Oxidation by molecular oxygen was sometimes necessary due to the reactivity of the oxidation products towards water or carbon dioxide from the air. Rearrangement of the 3-metalla-1,2-dioxolanes to formylmethyl hydroxy complexes is also reported. Part of this work has been communicated previously.^[4]

Results and Discussion

Synthesis of Ethene Complexes

Rhodium tpa Complexes

The complexes $[(tpa)Rh(CH_2CH_2)]BPh_4$ {7BPh_4, tpa = tris(2-pyridylmethyl)amine} and $[(Metpa)Rh(CH_2CH_2)]-PF_6$ {14PF_6, Metpa = $[(6-methyl-2-pyridyl)methyl]bis(2-pyridylmethyl)amine} were synthesized according to a literature procedure. NaBPh_4 and KPF_6 were used to precipitate 7BPh_4 and 14PF_6, respectively. [5]$

Iridium tpa Complexes

Bis(ethene) complexes 3BPh₄ and 3PF₆ were synthesized from in situ generated IrCl(C_2H_4)₄, tpa, and NaBPh₄ or KPF₆, respectively. Whereas a mono-ethene complex (7⁺) is formed for rhodium, a bis(ethene) complex is initially obtained for iridium, probably due to the better π -back-donating ability of iridium. However, an ethene molecule is easily lost from the bis(ethene) complex; when N₂ is bubbled through a solution containing 3⁺, the mono-ethene complex 4⁺ is obtained (Scheme 2). This reaction is reversible; when ethene is bubbled through a solution containing 4⁺, the bis(ethene) complex 3⁺ is obtained.

Scheme 2. Reactivity of bis(ethene) complex $3PF_6$ and monoethene complex $4PF_6$

The structure of complex 3⁺, as determined by X-ray diffraction, is shown in Figure 1. The complex has a trigonal bipyramidal conformation and contains the tpa ligand in a meridional tridentate coordination mode. This coordination mode has not been observed before for bis(olefin) metal complexes stabilized by bpa-type ligands {bpa = bis(2-pyridylmethyl)amine}; in such complexes the bpa-type tridentate nitrogen donor ligand usually adopts a facial coordination mode. [6,7] The ¹H NMR spectrum of 3⁺ at room temperature shows four triplets and its ¹³C NMR spectrum shows four singlets for the ethene fragments, indicating that the fragments are not rotating, probably due to steric hindrance.

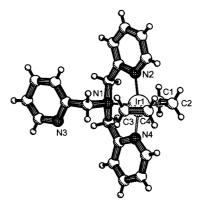
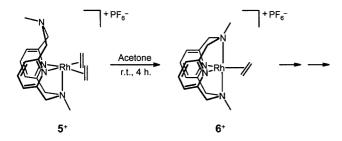



Figure 1. X-ray structure of bis(ethene) complex 3+

Rhodium N_4Me_2 Complexes

To test the influence of the nitrogen donor ligand on the reactivity of the ethene complexes, bis(ethene) complex 5⁺ (Scheme 3) was synthesized as the PF₆-salt from [{(ethene)₂RhCl}₂], N₄Me₂ and KPF₆. Complex 5⁺ contains the rigid macrocyclic N₄ ligand, N,N'-dimethyl-2,11diaza[3,3](2,6)pyridinophane^[8] (N₄Me₂). As mentioned earlier, reaction of tpa with IrCl(C₂H₄)₄ initially gives a bis-(ethene) complex, which easily and reversibly loses one ethene molecule. The same reaction with $[\{(C_2H_4)_2RhCl\}_2]$ only produces the mono-ethene complex 7⁺, even when carried out at low temperature. Rhodium apparently does not bind the second ethene molecule as strongly as iridium. Therefore, the initial formation of the bis(ethene) complex 5PF₆ with N₄Me₂ was surprising. However, 5PF₆ also loses an ethene molecule easily (see below). The synthesis of 5PF₆ is discussed in more detail in the supporting information.

Scheme 3. Loss of ethene from bis(ethene) complex 5PF₆

The 1 H NMR and 13 C NMR resonances of the vinylic groups of $\mathbf{5}^{+}$ are broad at room temperature, which indicates the rotation of the ethene fragments. At -60 °C this rotation is frozen, resulting in an ABCD-pattern in the 1 H NMR spectrum. X-ray quality crystals of 5 PF $_{6}$ were obtained by crystallization from acetone/diethyl ether (v/v = 1:3) over a period of nine days at -70 °C. The X-ray structure of the cation 5 + is shown in Figure 2. This is the first reported X-ray structure of a bis(ethene) rhodium complex stabilized by three nitrogen donors.

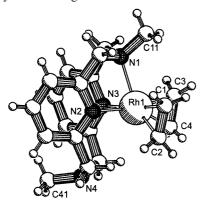


Figure 2. X-ray structure of bis(ethene) complex 5+

Cation 5^+ has a pseudo square pyramidal geometry with the amine occupying the apical position, and the N_4Me_2 ligand in a tridentate coordination mode. Three complexes in which this coordination mode is found for N_4Me_2 (or an analogous ligand) have been reported earlier, ^[9] but usually this ligand adopts a tetradentate coordination mode. ^[10] In complex 5^+ , as well as in the earlier reported κ^3 - N_4Me_2 complexes, ^[9] the N_4Me_2 ligand adopts a syn (chair-boat) conformation. The X-ray structure of 5^+ is discussed in more detail in the supporting information.

Mono-ethene complex $6PF_6$ is easily obtained by allowing $5PF_6$ to stand in acetone solution under a nitrogen atmosphere at room temperature for approximately four hours (Scheme 3). This is not a reversible reaction; bubbling ethene through a solution of $6PF_6$, or exposure of such a solution to an ethene atmosphere does not lead to the formation of $5PF_6$. The rate and selectivity of the conversion of 5^+ to 6^+ are highly dependent on the counterion used. Formation of 6^+ is slower and more selective if PF_6^- is used as the counterion, instead of BPh_4^- . Furthermore,

irrespective of the counterion, the selectivity is higher in acetone than in acetonitrile.

Since a square planar $[(\kappa^3-N_4Me_2)Rh(C_2H_4)]^+$ structure is not possible for complex 6^+ due to the rigidity of the N_4Me_2 ligand, we propose that the ligand has a κ^4 -coordination mode, similar to tpa in 7^+ .^[5] Another indication for tetradentate coordination is the fact that the signals for the NMe groups in the 1H NMR and ^{13}C NMR spectra are at approximately the same chemical shifts $[\delta(^1H)=2.15 \text{ ppm}, \delta(^{13}C)=49.8 \text{ ppm}]$ as the signals for the coordinated NMe group in 5^+ $[\delta(^1H)=2.25 \text{ ppm}, \delta(^{13}C)=52.6 \text{ ppm}]$.

Complex 6PF₆ is not stable in solution at room temperature, and decomposes within hours to a mixture of unidentified products. Thus, the formation of 6PF₆ is always accompanied by some decomposition, and analytically pure samples of it and its oxidation products (see below) could not be obtained.

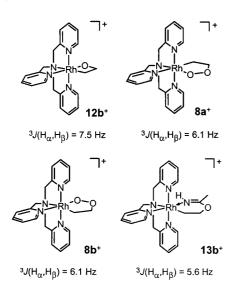
Formation of 3-Metalla-1,2-dioxolanes from Ethene Complexes

Rhodium tpa Complexes

Oxidation of 7BPh₄ by air at room temperature *in solution* (acetone, acetonitrile, dichloromethane) results in the dissociation of ethene and the formation of a mixture of unidentified products. In marked contrast, exposure of *solid* 7BPh₄ to air for two days results in the formation of 3-rhoda-1,2-dioxolane 8aBPh₄ (Scheme 4).^[11] A small amount of the hydroperoxy hydroxy complex 25BPh₄ is also formed (see below).

The ESI-MS spectrum of **8a**BPh₄ shows a base peak at m/z = 453, corresponding to $[(tpa)Rh(CH_2CH_2) + O_2]^+$. The 1H NMR spectrum shows the presence of a Rh-CH₂-CH₂ group. The $^3J(H_\alpha,H_\beta)$ coupling constant for this group (6.1 Hz, Table 1) suggests that it is part of a five-membered ring: the coupling constant is intermediate in magnitude between that observed in the four-membered 2-rhodaoxetane ring in $12b^+$ and the six-membered ring in the rhodium 2-(acetimidoyloxy)ethyl complex $13b^{2+}$ (Scheme 5). [5]

Crystals of **8a**BPh₄ suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into a 1,2-dichloroethane/acetonitrile solution. The unit cell contains two crystallographically independent units, which are almost mirror images. The structure of one of the units is shown in Figure 3. The five-membered ring has an envelope conformation. The puckering of the 3-rhoda-1,2-dioxolane ring is virtually the same as in the 3-platina-1,2-dioxolane ring of 1.^[3a],[^[12] The average O1–O2 distance [1.500(17) Å] is normal compared with the O–O distances in 1 [1.482(15) Å][^[3a] and other M–O–O-C compounds (1.40–1.52 Å);^[13] the average O2–C2 distance [1.443(10) Å] is also similar to that in 1 [1.407(19) Å] and other M–O–O-C compounds (1.40–1.47 Å).^[14]


The nature of the counterion largely influences the selectivity of this solid-gas oxygenation reaction. On changing the counterion of 7^+ from BPh_4^- to PF_6^- , a 1:1 mixture of

Scheme 4. Formation and rearrangement of 3-metalla-1,2-dioxolanes

Table 1. ¹H NMR chemical shifts (ppm) and coupling constants (Hz) of the RhCH₂CH_nO fragments in CD₃CN

Compound	$\delta(MCH_2)$	$\delta(CH_nO)^{[a]}$	$^3J_{ m H,H}$	$^2J_{ m H,Rh}$
8a ⁺	2.57(dt)	3.25(t)	6.1	2.4
8b ⁺	3.55 (dt)	3.41(t)	6.1	2.4
10a+	2.03(t)	2.54(t)	6.2	_
10b+	2.69(t)	2.63(t)	6.7	_
16 ⁺	2.90(dt)	3.66(t)	6.5	2.5
12b+	2.24(dt)	4.88(t)	7.5	2.5
9a+	2.69(dd)	9.26(t)	5.1	2.9
9b ⁺	3.47(dd)	9.98(t)	4.9	2.9
11a ⁺	3.07(d)	9.21(t)	5.2	_
11b+	3.66(d)	10.11(t)	4.9	_
17+	3.14(dd)	9.57(t)	5.4	3.2
20a ²⁺	3.05(dd)	9.51(t)	4.9	2.7
21a+	3.23(dd)	9.53(t)	4.7	2.5
22a+	3.39(d)	9.46(t)	4.8	_
18+	3.21(dd)	9.70(t)	5.5	2.8

[a]
$$n = 1,2$$
.

Scheme 5. Typical ${}^3J(H_\alpha,H_\beta)$ for Rh-CH₂-CH₂ fragments in four-membered (12b⁺), five-membered (8a⁺, 8b⁺), and six-membered (13b²⁺) rings

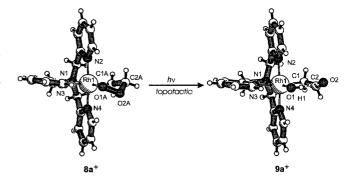


Figure 3. X-ray structures of 3-rhoda-1,2-dioxolane $8a^+$ and rhodium formylmethyl hydroxy complex $9a^+$

8aPF₆ and a new complex **8b**PF₆ is obtained after exposure to air for two days. ^[11] The ESI-MS and ¹H NMR spectra of the mixture of **8a**PF₆ and **8b**PF₆ in CD₃CN indicate that **8b**⁺ is the isomeric 3-rhoda-1,2-dioxolane in Scheme 4. The C_{α} resonances in the ¹³C NMR spectrum are at $\delta = 35.0$ and $\delta = 44.8$ ppm for **8a**⁺ and **8b**⁺, respectively, reflecting the stronger donor capacity of a pyridine versus an amine group (Table 2). The same trend is observed for **9a**⁺/**9b**⁺, **10a**⁺/**10b**⁺, and **11a**⁺/**11b**⁺, which are discussed below.

The NOE contacts in $8a^+$ and $8b^+$ are consistent with their proposed structures: isomer $8a^+$ shows NOE contacts between $Rh-CH_2-CH_2-$ and one proton each of the two equivalent $Rh-N_{amine}-CH_2-$ groups, and between $Rh-CH_2-CH_2-$ and the two equivalent py-H6 atoms; isomer $8b^+$ shows NOE contacts between $Rh-CH_2-CH_2-$ and all three py-H6 atoms, and between $Rh-CH_2-CH_2-$ and the two equivalent py-H6 atoms.

Possibly, the different packing in (microcrystalline) 7BPh₄ and 7PF₆ leads to the different accessibility of cation $\mathbf{7}^+$ to O₂. Remarkably, oxidation of $\mathbf{7}^+$ by hydrogen peroxide only leads to the formation of 2-rhodaoxetane $\mathbf{12b}^+$ ($N_{\rm amine}$, C trans) (Scheme 5). [5] Thus far, a 2-rhodaoxetane, $\mathbf{12a}^+$ ($N_{\rm amine}$, O trans), has not been observed.

Besides the influence of the counterion, small ligand changes also have a large effect on the reactivity of *solid* rhodium-ethene complexes towards air. Substitution of one

Table 2. ¹³C NMR chemical shifts (ppm) and coupling constants (Hz) of the RhCH₂CH_nO fragments in CD₃CN

Compound	$\delta(MCH_2)$	$\delta(C\mathbf{H}_n\mathbf{O})^{[\mathbf{a}]}$	$^{ m l}J_{ m C,Rh}$	
8a+	35.0(d)	70.2(s)	25.0	
8b ⁺	44.8(d)	72.8(s)	28.8	
10a+	15.8(s)	71.1 or 71.8(s)	_	
10b ⁺	23.9(s)	71.6(s)	_	
16 ⁺	30.3(d)	71.7(s)	25	
12b ⁺	$1.3(d)^{[b]}$	78.7(d)	18.4 ^[b]	
9a+	26.9(d)	209.0(s)	21.0	
9b+	34.5(d)	210.8(s)	25.0	
11a ⁺	16.3(s)	209.4(s)	_	
11b ⁺	20.7(s)	211.2(s)	_	
17+	33.4(d)	207.7(s)	21.2	
20a ²⁺	27.8(d)	206.7(d)	20.4	
21a ⁺	28.1(d)	210.1(s)	20.7	
22a ⁺	14.8(s)	211.1(s)	_	

[a] n = 1,2. [b] [D₆]Acetone.

Py-H6 of tpa for a methyl group, for example, leads to a large decrease in the reaction rate. According to the ¹H NMR spectrum (Scheme 6), exposure of *solid* **14**PF₆ to pure molecular oxygen for 7 *months* results in approximately 45% conversion into a 2:1 mixture of **15a**⁺ and **15b**⁺ (the remainder being starting material). Exposure of *solid* **14**BPh₄ to pure molecular oxygen for a similar period of time also results in the formation of a mixture of **15a**⁺ and **15b**⁺. This was unexpected since exposure of the analogous complex **7**BPh₄ only results in the formation of isomer **8a**⁺. Again, different packing in **7**BPh₄ and **14**BPh₄ might be responsible for this difference in selectivity.

Scheme 6. Oxygenation of rhodium ethene complex 14PF₆

Iridium tpa Complexes

Exposure of a *solution* of **4BPh**₄ to air leads to a mixture of unidentified products, whereas exposure of *solid* **4BPh**₄ to air leads to the formation of 3-irida-1,2-dioxolane

10aBPh₄ (Scheme 4). Exposure of *solid* 4PF₆ to air results in the formation of a mixture of the isomeric iridadioxolanes 10aPF₆ and 10bPF₆, in an approximate ratio of 2:5 (Scheme 4). Powder X-ray diffraction spectra of 4PF₆ and 7PF₆ show that these complexes are isomorphous, which indicates that the different ratios in which the isomeric 3-rhoda- and 3-iridadioxolanes are formed do not stem from the different packing of the starting materials.

ESI-MS spectra of $10aBPh_4$ and $10aPF_6/10bPF_6$ could not be obtained because of the instability of these complexes in solution at room temperature (see below). The 1H NMR spectra show two triplets for the $Ir-CH_2-CH_2-$ fragment, with $^3J(H_\alpha,H_\beta)=6.2$ and 6.7 Hz for $10a^+$ and $10b^+$, respectively. This indicates that the fragments are part of five-membered rings (Table 1, Scheme 5). The 1H NMR signals for $IrCH_2$ - and for $-CH_2O-$ were assigned by analogy with the 3-rhoda-1,2-dioxolanes (Table 1).

Rhodium N₄Me₂ Complexes

On reaction of *solid* **6**PF₆ with dioxygen (instead of air; see below), at room temperature in the dark, **16**PF₆ was formed within a few days.^[11] The ¹H NMR spectrum of **16**PF₆ shows two double triplets at $\delta = 2.94$ ppm and at $\delta = 3.70$ ppm, indicating the presence of a RhCH₂CH₂X fragment (Table 1). A coupling constant of ${}^3J_{\rm H,H} = 6.5$ Hz for these signals indicates that a five-membered ring is formed (Table 1). The ESI-MS spectrum shows a base peak at m/z = 431, which is in accordance with the formation of 3-rhodadioxolane **16**⁺ (Scheme 7). All attempts to obtain X-ray quality crystals of **16**⁺ failed, partly because of its instability in solution.

Rearrangement of 3-Metalla-1,2-dioxolanes to Formylmethyl Hydroxy Complexes

Rhodium tpa Complexes

Exposure of microcrystalline **8a**BPh₄ to glass-filtered daylight under N₂ results in the selective conversion into the corresponding rhodium formylmethyl hydroxy complex **9a**BPh₄, in several weeks (Scheme 4). Similarly, exposure of a solution of **8a**BPh₄ in CD₃CN to the glass-filtered light of a high-pressure mercury lamp at -30 °C results in the conversion into **9a**BPh₄. Monitoring of this reaction by ¹H NMR indicates that an optimum yield of 90% **9a**BPh₄ is obtained after 90 minutes of illumination (see Supporting Information).

The ESI-MS spectrum of $9a^+$ is similar to that of $8a^+$, with the exception of a peak at m/z=435, which corresponds to the loss of water from the parent cation. Such loss of water in the gas-phase has been observed earlier for the transient formylmethyl hydroxy complex [(MeCN)(Bzbpa- κ^3)Rh(CH₂CHO- κ^1)(OH)]BPh₄ (19BPh₄), which is the only other formylmethyl hydroxy complex reported thus far, [15,16] although several other formylmethyl complexes have been reported. [17]

Scheme 7. Formation and rearrangement of rhodadioxolane 16PF₆ and subsequent reaction with CO₂

The ¹H NMR and ¹³C NMR spectra of **9a**BPh₄ show signals typical of a metal-bound formylmethyl group, similar to those found in **19**BPh₄ (Tables 1 and 2).^[16] Complex **9a**⁺ shows a strong IR absorption at 1655 cm⁻¹, in accordance with the presence of a carbonyl group.

After repeated attempts to obtain X-ray quality crystals of **9a**BPh₄ had failed, an attempt was made to photochemically convert a single crystal of **8a**BPh₄ to a single crystal of **9a**BPh₄. The crystal that had been used for the X-ray structure determination of **8a**BPh₄ was exposed to glassfiltered daylight for one week and its crystal structure was re-determined. It was found that **8a**⁺ had been fully converted into **9a**⁺ leaving the crystal packing virtually unchanged (a "topotactic" transformation).^[18]

The crystal structure of $9a^+$ shows that the hydroxy group forms a hydrogen-bond with the formyl fragment, thus forming a puckered six-membered ring (Figure 3). The bridging hydrogen (H1) was refined at an O1-H1 distance of 0.80(5) Å [Rh-O1-H1 = $99(4)^\circ$] and a H1-O2 distance of 1.92(5) Å [O1-H1-O2 = $168(5)^\circ$]. The puckering of the six-membered ring results from the rotation of the formyl fragment around the C1-C2 bond [torsion angle Rh-C1-C2-O2 = $-72(3)^\circ$]. The crystal structure of $9a^+$ is discussed in more detail in the supporting information.

We propose that the photochemical rearrangement of $8a^+$ to $9a^+$ involves photolysis of the O–O bond, followed by abstraction of a β -hydrogen atom from $-CH_2-CH_2-O$ by -O (Scheme 8, a). In the solid state, the puckering of the 3-rhoda-1,2-dioxolane ring positions a β -hydrogen in close proximity of the O1 atom (Figure 3). Therefore, this reaction would not be hindered by the constraints of the

Scheme 8. Proposed mechanisms for rearrangement of 3-metalla-1,2-dioxolanes: a) photochemically, to a formylmethyl hydroxy complex b) proton assisted, to a formylmethyl hydroxy complex c) directly, to an oxo complex species and acetaldehyde^[1a,2] and d) directly, to an oxo complex and ethylene oxide^[1f]

lattice. The mechanism, shown in Scheme 8 (see a), is supported by preliminary DFT calculations.^[19]

Analogous to microcrystalline 3-rhoda-1,2-dioxolane 8aBPh₄, the microcrystalline mixture of the isomeric 3rhoda-1,2-dioxolanes 8aPF₆ and 8bPF₆ (8aPF₆/8bPF₆) rearranges photochemically to a mixture of the isomeric formylmethyl hydroxy complexes 9aPF₆ and 9bPF₆ (9aPF₆/ 9bPF₆; Scheme 4). However, 8aBPh₄ and 8aPF₆/8bPF₆ react differently when exposed to a N2 atmosphere saturated with H₂O; complex 8aBPh₄ proved to be stable, whereas 8aPF₆/8bPF₆ rearranges to 9aPF₆/9bPF₆. Since 8aPF₆/ 8bPF₆ is stable under dry N₂, this reactivity must have been triggered by the presence of H₂O. Since there is no obvious mechanism by which H₂O would directly cause O-O bond breaking in the rhodadioxolane, we considered the possibility that a trace of acid (possibly generated from hydrolysis of a small amount of PF₆⁻ to PF₂O₂⁻ and HF) catalyzes the conversion. To investigate proton-assisted ring opening in solution, 0.1 equivalent of the noncoordinating acid $[H(OEt_2)_2]B[C_6H_3(CF_3)_2]_4$ (HBAr₄) was added to a solu-

tion of 8aBPh₄ in CD₃CN. In a typical experiment, the ¹H NMR spectrum shows that 8a⁺ is converted into the formylmethyl hydroxy complex 8a⁺ (87%) within 10 minutes, and a small amount (8%) of the formylmethyl aqua complex **20a**²⁺ (i.e. protonated **9a**⁺) is also formed.^[20] Likewise, addition of 1.1 equivalent of HBAr₄^F to a solution of 8aBPh₄ results in the formation of 20a²⁺ in approximately 85% yield within 10 minutes.^[20] In the latter case, any 9a⁺ formed is apparently directly protonated. This protonation results in a downfield shift of the Rh-CH2-CHO and Rh-CH₂-CHO ¹H NMR signals from $\delta = 2.69$ to $\delta =$ 3.05 ppm and from $\delta = 9.26$ to $\delta = 9.51$ ppm, respectively. The base-peak in the ESI-MS spectrum of the obtained solution has the correct isotope distribution pattern and m/zvalue (227) for **20a**²⁺. As demonstrated by its formylmethyl ¹H NMR signals, a trace of **20a**²⁺ is also formed in the conversion of solid 8aPF₆/8bPF₆ to 9aPF₆/9bPF₆ under N₂ saturated with H₂O. This supports our hypothesis of an acid-catalyzed ring opening.

A possible mechanism for the acid-catalyzed ring opening is shown in Scheme 8, b. Protonation of $\mathbf{8a}^+$ at O_α induces heterolytic splitting of the O–O bond, followed by the deprotonation at C_β by an external base and the formation of a carbonyl double bond. This mechanism was supported by preliminary DFT calculations. [19]

The isomeric 3-rhodadioxolanes **8a**⁺ and **8b**⁺ clearly differ in their photoreactivity: on exposure of a CD₃CN solution of **8a**⁺ and **8b**⁺ to glass-filtered daylight at room temperature, the relative intensities of the ¹H NMR 2-peroxyethyl signals show that the initial reaction rate of **8b**⁺ is three times faster than that of **8a**⁺ (Figure 4).

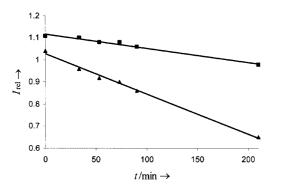


Figure 4. Relative intensities of the 2-peroxyethyl 1H NMR signals of $8a^+$ (\blacksquare) and $8b^+$ (\blacktriangle) on exposure to glass-filtered daylight

Formylmethyl hydroxy complexes $9a^+$ and $9b^+$ decompose to a mixture of unidentified products in solution at room temperature on prolonged exposure to light.

Iridium tpa Complexes

Both $10a^+$ and $10b^+$ rearrange to iridium formylmethyl hydroxy complexes ($11a^+$ and $11b^+$) on exposure to light. The ESI-MS spectra of $11aBPh_4$ and $11aPF_6/11bPF_6$ show the expected base peak at m/z = 543. For $11aBPh_4$, the daughter ion spectrum from this base peak shows a peak at m/z = 525, corresponding to the loss of water.

There is a large difference in reactivity between the 3-rhodadioxolanes and the 3-iridadioxolanes: 3-iridadioxolanes rearrange to form formylmethyl hydroxy complexes in solution at room temperature, whereas 3-rhodadioxolanes need to be exposed to light or protons before rearrangement can take place. It is possible that the iridadioxolanes are more sensitive to traces of adventitious acid, e.g. on glass surfaces, than the rhodadioxolanes. Another possibility is that for iridium, water is already a strong enough acid to induce the conversion. Finally, an alternative conversion mechanism, not requiring any acid, may be possible for iridium.

The iridium formylmethyl hydroxy complexes 11a⁺ and 11b⁺ are stable in CH₃CN solution at room temperature when exposed to light, whereas the rhodium analogues decompose under these conditions.

Rhodium N₄Me₂ Complexes

Both in the presence and absence of visible light, the *solid* mono-ethene complex 6PF₆ reacts with air, within a few days at room temperature, to form a mixture of two formylmethyl complexes in an approximate ratio of 5:1, according to the ¹H NMR spectrum in CD₃CN. The ESI-MS spectrum of the mixture in CH₃CN shows a base peak at m/z =431, in accordance with the presence of the formylmethyl hydroxy complex 17⁺, and a peak at m/z = 475, corresponding to the formylmethyl hydrogen carbonate complex 18⁺. Water present in the air probably induces an acid-catalyzed rearrangement of the initially formed dioxolane to a formylmethyl hydroxy complex. Although rearrangement on exposure to a nitrogen atmosphere saturated with water had been observed earlier for the tpa complexes (see above), rearrangement on exposure to air was not observed. Furthermore, the resulting formylmethyl hydroxy complex reacts with carbon dioxide from the air, forming 18⁺. This has not been observed for the tpa complexes either. However, exposure of 9aBPh4 or 11aBPh4 to a CO2 atmosphere leads to the full conversion into the formylmethyl hydrogen carbonate complexes 21aBPh4 and 22aBPh4, respectively (Scheme 9). On removal of the CO₂ atmosphere, CO₂ is released and the formylmethyl hydroxy complexes 9aBPh4 or 11aBPh₄ are regenerated. Formation of rhodium and iridium hydrogen carbonate complexes from metal hydroxy complexes and CO₂, and vice versa have been reported before.[21]

Scheme 9. Reversible reaction of formylmethyl hydroxy complexes $9a^+$ and $11a^+$ with CO_2

Exposure of *solid* **16**PF₆ (obtained from **6**PF₆ and dioxygen; see above) to visible light and N₂ leads to the conversion into **17**PF₆, as shown by the ESI-MS, ¹H NMR and ¹³C NMR spectra in CD₃CN (Tables 1 and 2). Exposure of **16**PF₆ to water vapour/N₂ also leads to the formation of **17**PF₆, probably due to the PF₆⁻ counterion (see above).

Oxidation of a Rhodium Propene Complex to a Peroxo Complex and Its Reactivity towards Water

As mentioned earlier, exposure of *solid* 7BPh₄ to air not only produces 3-rhoda-1,2-dioxolane **8a**BPh₄, but also a small amount of the hydroperoxy hydroxy complex **25**BPh₄. Exposure of *solid* 7BPh₄ to pure dioxygen, however, leads to the formation of **8a**BPh₄ and a small amount of the peroxo complex **24**BPh₄. This peroxo complex can be obtained more efficiently by the oxidation of *solid* [(tpa)Rh-(CH₂CHCH₃)]BPh₄ (**23**BPh₄) with molecular oxygen (Scheme 10).

Complex 23BPh₄ was synthesized from [{(ethene)₂-RhCl}₂], propene, tpa, and NaBPh₄. It is the first reported rhodium propene complex stabilized by a tetradentate nitrogen donor ligand. Propene coordinates less strongly to the rhodium center than ethene, resulting in an easier loss of olefin from the complex and the quantitative formation of 24BPh₄ on oxidation with molecular oxygen. Oxidation with air results in a mixture of unidentified products. The reason for this is still unclear. Possibly, further reactions of

24BPh₄ with water (see below), and subsequently with CO₂ occur. The ¹H NMR and ¹³C NMR spectra of **24**BPh₄ only show signals for the (coordinated) tpa ligand. The ESI-MS spectrum of **24**BPh₄ shows a base peak at m/z = 425, corresponding to [(tpa)Rh + O₂]⁺, and the loss of O₂ from the parent cation. ^[22]

Exposure of complex **24**BPh₄ to a nitrogen atmosphere saturated with water leads to the complete conversion into **25**BPh₄. The ¹H NMR and ¹³C NMR spectra of **25**BPh₄ again only show signals for the (coordinated) tpa ligand. The ESI-MS spectrum shows a base peak at m/z = 443, corresponding to **25**⁺, and the loss of H₂O, HO₂, and H₂O₃ from the parent cation. Complex **25**BPh₄ is the first rhodium hydroperoxy hydroxy complex reported, but other metal hydroperoxy hydroxy complexes have been reported earlier. Analytically pure samples of **24**BPh₄ and **25**BPh₄ were not obtained, due to their instability in solution at room temperature. Since the decomposition of **25**BPh₄ is a problem in solution at -30 °C as well, no ¹³C NMR spectroscopic data were obtained for this complex.

Conclusions

We have achieved selective oxidation of [M]^I(ethene) (M = Rh, Ir) complexes by air or dioxygen to form isolable 3-metalla-1,2-dioxolanes for the first time. Remarkably selective dioxygenation was only achieved for ethene complexes embedded in a crystalline matrix. The reasons for this difference between solid phase reactivity and solution phase reactivity have not yet been elucidated. However, our results clearly indicate that solid-gas reactions should be considered as a useful alternative to conventional solution phase chemistry, not only under heterogeneous conditions (high pressures and temperatures), but also at room temperature and atmospheric pressure.

Small changes have a large effect on the reactivity of the ethene complexes. The dioxygenation of $14PF_6$ is much slower than of $7PF_6$. Using a completely different N_4 -ligand (N_4Me_2) results in a higher reactivity of not only the ethene

Scheme 10. Reaction of propene complex 23BPh₄ with dioxygen

complex, but also of the 3-rhodadioxolane and the formylmethyl hydroxy complex. More interestingly, even the counterion affects the oxidation chemistry; oxygenation of 7PF₆ results in the formation of two isomeric 3-rhodadioxolanes, whereas oxygenation of 7BPh₄ only yields one isomer. Thus, it appears that for these solid-gas reactions, new opportunities for reaction tuning exist.

The observed rearrangement of 3-metalla-1,2-dioxolanes to formylmethyl hydroxy complexes is in marked contrast with the rearrangements proposed earlier for 3-metalla-1,2-dioxolanes i.e. direct rearrangement to a metal oxo complex and acetaldehyde, or to a metal oxo complex and ethylene oxide. [1f] However, the formylmethyl complexes may still be intermediates in the formation of acetaldehyde and a rhodium oxo or hydroxy complex.

In the 1980's Read et al. proposed that 3-rhodadioxolanes are intermediates in the co-oxygenation of terminal or cyclic olefins and triphenylphosphane, to ketones and triphenylphosphane oxide (Scheme 11). The 3-rhodadioxolane is converted into a 2-rhodaoxetane via the transfer of an O atom to triphenylphosphane. The triphenylphosphane oxide stabilized 2-rhodaoxetane then successively loses triphenylphosphane oxide and a ketone. Our findings do not support such a mechanism. 3-Rhoda-1,2-dioxolane 8aBPh₄ does not react with triphenylphosphane, and the formation of 2-rhodaoxetanes from 3-rhoda-1,2-dioxolanes have not been observed.

Scheme 11. Mechanism proposed by Read for rhodium catalyzed co-oxygenation of olefins and triphenylphosphane to ketones and triphenylphosphane oxide^[1b]

Both Mimoun and Read proposed the formation of 3-rhoda-1,2-dioxolanes from rhodium peroxo ethene complexes. [1a,1b] We have not observed such peroxo ethene intermediates in the formation of 3-rhoda-1,2-dioxolanes. Our group has isolated iridium peroxo ethene complexes, generated through the reaction of iridium ethene complexes with dioxygen in solution, however, these complexes are quite stable and the formation of 3-irida-1,2-dioxolanes is not observed from these complexes. [6c]

Experimental Section

General Methods: All procedures were performed under a nitrogen atmosphere using standard Schlenk techniques, unless indicated otherwise. The solvents (p.a.) were deoxygenated by bubbling through a stream of nitrogen.

NMR experiments were carried out on Bruker DPX200, Bruker AC300, Bruker WM400, and Bruker AM-500. Solvent shift references for 1H NMR are: CD_2Cl_2 $\delta(^1H)=5.31$ ppm, CD_3CN $\delta(^1H)=1.94$ ppm and $[D_6]$ acetone $\delta(^1H)=2.05$ ppm. Solvent shift references for ^{13}C NMR are: CD_3CN $\delta(^{13}C)=118.1$ ppm and $[D_6]$ acetone $\delta(^{13}C)=206.18$ ppm. Abbreviations used are: s= singlet, d= doublet, dd= double doublet, t= triplet, dt= double triplet, q= quadruplet, q= quadruplet of quadruplets, m= multiplet, dm= double multiplet, dm= broad. Mass spectra (ESI) were recorded on a Finnigan MAT 900S and a Finnigan TSQ 7000 mass spectrometer. Elemental analyses (C, H N) were carried out on an Hanau Elementar-Analyzer CHN-O-Rapid. Infrared spectra were measured on a Perkin–Elmer 1720X spectrometer.

Compounds $[\{(CH_2CH_2)_2RhCl\}_2],^{[24]}$ tpa, $^{[25]}$ Metpa, $^{[26]}$ $[(Metpa)Rh(CH_2CH_2)]BPh_4/PF_6,^{[5]}$ $[(tpa)Rh(CH_2CH_2)]BPh_4/PF_6,^{[5]}$ $N_4Me_2,^{[27]}$ $[\{(C_8H_{14})IrCl\}_2],^{[28]}$ and $[H(OEt_2)_2]B[C_6H_3(CF_3)_2]_4$ (HBAr $^4_F)^{[29]}$ were prepared according to literature procedures. All other chemicals were obtained commercially and were used without further purification.

X-ray Diffraction: Crystals of $3PF_6$ suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into an acetonitrile solution. Crystals of $5PF_6$ were obtained by crystallization from acetone/diethyl ether (v/v = 1:3) over a period of nine days at -70 °C. Crystals of $8aBPh_4$ were obtained through slow diffusion of diethyl ether into a 1,2-dichloroethane/acetonitrile solution. A crystal of $9aBPh_4$ was obtained by exposure of a crystal of $8aBPh_4$ to glass-filtered daylight for one week.

X-ray diffraction data for 3PF₆ and 5PF₆ were collected at 208(2) K on an Enraf-Nonius CAD4 diffractometer, using graphite monochromatized Mo- K_{α} radiation ($\lambda = 0.71073 \text{ Å}$) and Cu- $K\alpha$ radiation ($\lambda = 1.54184 \text{ Å}$), respectively. X-ray diffraction data for 8aBPh₄ and 9aBPh₄ were collected at 150(2) K on a Nonius KappaCCD diffractometer with rotating anode, using graphite monochromatized Mo- K_{α} radiation ($\lambda = 0.71073$ Å). The structures were solved by the PATTY^[30] option of the DIRDIF^[31] program system. All non-hydrogen atoms were refined with anisotropic temperature factors. The bridging hydrogen atom of the formyl fragment in 9aBPh4 was taken from a difference Fourier map and was freely refined. All other hydrogen atoms were placed at calculated positions and were refined isotropically in riding mode. Subsequently, for 5PF₆, the hydrogen atoms were freely refined. Selected bond lengths and angles are shown in Tables 3 and 4. Other relevant crystal data are summarized in Table 5. Drawings were generated with the program PLATON.[32]

3PF₆: Geometrical calculations (PLATON, Spek 1995)^[33] revealed neither unusual geometric features, nor unusual short intermolecular contacts. The calculations revealed no higher symmetry and no solvent accessible areas.

5PF₆: There is a disordered solvent molecule present in the crystal structure. Calculations (PLATON, Spek,1995)^[33] showed a void of 95 Å³, containing 31 electrons, at 0.0032, 0.466, 0.842. Based on the synthetic route, the electron density most probably represents one acetone molecule (C_3H_6O , 32 electrons). The SQUEEZE pro-

Table 3. Selected bond lengths $[\mathring{A}]$ for 3^+ , 5^+ , $8aA^+$, $8aB^+$, and $9a^+$ (M = Rh or Ir)

	3+	5+	8aA+	8a B ⁺	9a+
N1-M	2.175(8)	2.311(5)	2.054(2)	2.054(2)	2.040(3)
N2-M	2.027(10)	2.145(5)	2.015(3)	2.015(3)	2.018(4)
N3-M	_	2.163(5)	2.133(3)	2.133(3)	2.102(3)
N4-M	2.056(8)	_	2.030(3)	2.030(3)	2.033(4)
C1-M	2.164(11)	2.113(7)	2.030(16)	2.076(16)	2.085(4)
C2-M	2.126(13)	2.143(7)	_	_	-
C3-M	2.157(11)	2.104(8)	_	_	-
C4-M	2.118(10)	2.125(8)	_	_	-
O1-M	=	_	2.01(2)	1.97(2)	2.014(3)
O1-O2	_	_	1.504(18)	1.496(16)	_
O1-H1	_	_	-	- ' '	0.80(5)
H1-O2	_	_	_	_	1.92(5)
O2-C2	_	_	1.430(11)	1.455(9)	1.103(11)
C2-C1	1.419(16)	1.411(11)	1.563(11)	1.534(11)	1.245(12)
C3-C4	1.416(16)	1.341(11)	-	-	-

Table 4. Selected angles and torsion angles [°] for $3^+,\,5^+,\,8a{\rm A}^+,\,8a{\rm B}^+,\,$ and $9a^+$ (M = Rh or Ir)

	3 ⁺	5 ⁺	8aA+	8aB ⁺	9a+
N1-M-N2	82.2(3)	78.41(19)	84.04(10)	84.04(10)	83.54(13)
N1-M-N3	_	78.2(2)	81.87(10)	81.87(10)	82.83(12)
N1-M-N4	82.1(3)	_	82.91(10)	82.91(10)	82.44(13)
N2-M-N3	_	77.72(19)	88.47(10)	88.47(10)	87.78(13)
N2-M-N4	164.1(4)	_	166.33(10)	166.33(10)	165.46(13)
N3-M-N4	_	_	93.70(10)	93.70(10)	94.27(13)
C1-M-O1	_	_	84.6(4)	84.7(4)	90.18(18)
C2-C1-M	69.2(6)	71.8(4)	106.0(9)	102.2(8)	111.4(5)
O2-C2-C1	_	_	106.2(18)	111.5(10)	146(2)
O1-O2-C2	_	_	106.1(15)	101.7(11)	-
M-O1-O2	_	_	106.3(10)	110.8(12)	_
C1-M-N1	95.7(4)	95.3(3)	99.3(3)	95.9(3)	96.18(15)
C1-M-N2	89.4(4)	96.7(3)	91.2(4)	87.5(4)	89.26(16)
C1-M-N3	_	172.1(3)	178.7(3)	175.6(4)	176.97(16)
C1-M-N4	90.1(4)	_	86.9(4)	89.8(4)	88.44(17)
O1-M-N1	_	_	175.9(4)	179.1(7)	173.63(15)
O1-M-N2	_	_	97.0(12)	95.3(11)	96.19(15)
O1-M-N3	_	_	94.2(3)	97.5(3)	90.80(15)
O1-M-N4	_	_	96.3(12)	97.7(11)	98.17(15)
M-O1-H1	_	_	_	_	99(4)
O1-H1-O2	_	_	_	_	168(5)
M-C1-C2-	_	_	_	_	-72(3)
O2					
C1-M-C3	_	89.9(4)	_	_	_
C2-M-C4	_	84.4(4)	_	_	_
C1-C2-M	72.1(7)	69.5(4)	_	_	_
C3-C4-M	72.1(6)	70.7(5)	_	_	_
C4-C3-M	69.2(6)	72.3(5)	_	-	_

cedure was applied to account for the electron density of the solvent molecule.

8aBPh₄: The five-membered dioxolane ring has the envelope form and occurs in two conformations. As expected there is considerable positional overlap for some of the atoms (C1A and C1B, C2A and C2B, O1A and O1B). Therefore, some geometrical constraints had to be applied: the two conformations were 'SAMEd' and the anisotropic thermal displacement parameters were tied. Calculations (PLATON, Spek 1995)^[33] showed two distinct voids, one of 229 Å³, containing 68 electrons, around a two-fold axis (position 4e, 0,

y, 1/4; y = -0.036), and one of 152 ų, containing 44 electrons, around an inversion center (position 4b: 1/2, 0, 0). Based on the synthetic route and evidence from NMR spectroscopy, it is assumed that these electron densities represent one molecule of diethyl ether (C₄H₁₀O, 42 electrons) plus one molecule of acetonitrile (CH₃CN, 22 electrons) in the first void (64 electrons, 28.5 ų/atom), and one molecule of dichloroethane (C₂H₄Cl₂, 50 electrons) in the second void (30.2 ų/atom). It was not possible to assign any physically meaningful parameters to the electron densities found in the difference fourier map. Therefore the SQUEEZE procedure was applied to account for these electron densities.

9aBPh₄: Hydrogen atom H1 was clearly visually observed in a difference fourier map and its position was subsequently determined automatically. Its positional and thermal parameters were refined freely and this refinement proved to be stable. The position of H1 is well outside the regions influenced by the SQUEEZE procedure described later on.

From the anisotropic thermal displacement parameters for C2 and O2 it is clear that these atoms show a large positional disorder. Although it is possible to use several partially occupied positions for these atoms, no physically reasonable models result from these parameters, at least not any better than the model presented here. Splitting up these atoms serves no other purpose but to lower the *R*-value. The calculated hydrogen positions on C2 are therefore merely indications of possible positions.

Calculations (PLATON, Spek 1995)^[33] showed two distinct voids, one of 239 Å³, containing 58 electrons, around a two-fold axis (position 4e, 0, y, 1/4; y = -0.041), and one of 152 Å³, containing 39 electrons, around an inversion center (position 4b: 1/2, 0, 0). Based on the synthetic route and evidence from NMR spectroscopy, it is assumed that these electron densities possibly represent one molecule of diethyl ether (C₄H₁₀O, 42 electrons) plus one molecule of acetonitrile (CH₃CN, 22 electrons) in the first void (64 electrons, 29.9 Å³/non-hydrogen atom), and one molecule of dichloroethane (C₂H₄Cl₂, 50 electrons) in the second void (38.0 Å³/non-hydrogen atom). These assumptions are in accordance with the earlier crystal structure determination of the original crystal of 8aBPh₄ before its exposure to glass-filtered daylight, and account for the calculated physical molecular properties as reported in this paper.

It was not possible to assign any physically meaningful parameters to the electron densities found in the difference fourier map. Therefore, the SQUEEZE procedure was applied to account for these electron densities.

CCDC-187013 (3PF₆), CCDC-187012 (5PF₆), CCDC-157414 (8aBPh₄), and CCDC-170096 (9aBPh₄) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) +44–1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Synthesis

Bis(ethene)[N-(2-pyridylmethyl)-N,N-bis(2-pyridylmethyl- κN)amine- κN [iridium(1) Hexafluorophosphate (3PF₆): Ethene was bubbled through a solution of [(C₈H₁₄)₂IrCl]₂ (325 mg, 0.36 mmol) in MeOH (13 mL) until a clear solution was obtained. Under an ethene atmosphere, tpa (216 mg, 0.74 mmol) was added and the reaction mixture was stirred for 10 minutes. KPF₆ (167 mg, 0.91 mmol) was then added under an ethene atmosphere, and after stirring for 1 hour, the solution was cooled to -78 °C. The cold suspension was filtered under a nitrogen atmosphere and the white

Table 5. Crystallographic data

	3+	5 ⁺	8a ⁺	9a+
Empirical formula	$C_{22}H_{26}F_6IrN_4P$	C ₄₇ H ₅₄ BN ₄ ORh	C ₄₈ H _{50.50} BClN _{4.50} O _{2.50} Rh	C ₄₈ H _{50.50} BClN _{4.50} O _{2.50} Rh
Crystal color		Transparent yellow-brown		Transparent yellow
Crystal shape	Regular platelet	Irregular fragment	Irregular fragment	Irregular fragment
Crystal size [mm]	$0.53 \times 0.46 \times 0.10$	$0.36 \times 0.24 \times 0.10$	$0.29 \times 0.22 \times 0.13$	$0.29 \times 0.22 \times 0.13$
Molecular weight	683.64	804.66	879.60	879.60
T [K]	208(2)	208(2)	150(2)	150(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P 21/c	P 21/n	C 2/c	C 2/c
Unit cell dim. from N refl.	23	21	17718	14986
a [Å]	7.538(2)	11.555(2)	35.8688(5)	36.0362(2)
b [Å]	14.831(3)	17.523(5)	10.7328(2)	10.77600(10)
c [Å]	20.753(10)	19.686(5)	24.2609(4)	24.2975(2)
α [°]	90	90	90	90
β [°]	90.07(3)	97.38(2)	116.6660(10)	116.3883(4)
γ [°]	90	90	90	90
$V[\mathring{A}^3]$	2320.2(13)	3952.9(17)	8346.4(2)	8452.21(11)
$\rho_{\text{calcd.}} [\text{g·cm}^{-3}]$	1.957	1.352	1.400	1.382
Z	4	4	8	8
Diffractometer	Enraf-Nonius CAD4	Enraf-Nonius CAD4	Nonius Kappa CCD	Nonius Kappa CCD
Diffactometer	Emai Tomas Crib	Emai Tomas Crib	with rotating anode	with rotating anode
Abs. Coefficient [mm ⁻¹]	5.890	3.805	0.520	0.514
Scan	ω-2θ	ω-2θ	Area detector,	Area detector,
Scan	w 20	W 20	and ω scan	and ω scan
Radiation (graphite mon.)	$Mo-K_{\alpha}$	Cu-Kα	$Mo-K_a$	$Mo-K_{\alpha}$
Wavelength [Å]	0.71073	1.54184	0.71073	0.71073
F(000)	1328	1688	3656	3656
Θ range [°]	2.70-27.48	3.39-69.93	1.27-27.48	1.73-25.35
Index ranges	$-9 \le h \le 0$	$0 \le h \le 14$	$-46 \le h \le 46$	$-43 \le h \le 43$
index ranges	$-19 \le k \le 0$	$0 \le k \le 14$ $0 \le k \le 21$	$-13 \le k \le 13$	$-12 \le k \le 12$
	$-26 \le l \le 26$	$-23 \le l \le 23$	$-31 \le l \le 31$	$-29 \le l \le 29$
Abs. Corr.	Semi-empir. Ψ -scan ^[a]	Semi-empir. Ψ -scan ^[a]	None None	None None
Range of rel. transm. fac.	4.786, 0.696	1.083, 0.947		
Measured reflections	5707	7865	17718	14986
Unique reflections	5314	7478	9548	7719
$[R_{\rm int}]$	[0.0481]	[0.0633]	[0.0508]	[0.0294]
Observed reflections	4542	4765	5801	5510
$[I_0 > 2\sigma(I_0)]$	4342	4703	3601	3310
Data/restraints/parameters	5314/0/308	7478/0/485	9548/184/506	7719/0/473
Goodness-of-fit on F^2	1.090	1.004	0.963	1.054
SHELXL-97 weight parameters	0.1169, 42.6696	0.0970, 0.0000	0.0586, 0.0000	0.0870, 6.0419
	0.0657, 0.1843	0.0702, 0.1617	0.0459, 0.1080	0.0494, 0.1402
	0.0766, 0.1992	0.1140, 0.1815	0.0904, 0.1186	0.0721, 0.1492
Diff. Peak and hole [$e \cdot \mathring{A}^{-3}$]		1.635, -1.208	0.770, -0.508	0.899, -0.643

[a] A. C. T. North, D. C. Philips, F. S. Mathews, Acta Crystallogr. 1968, A24, 351-359.

residue was washed with MeOH (3 × 1 mL) and dried in vacuo. Complex 3PF₆ was obtained as a white powder. Yield: 290 mg (58%). ¹H NMR (200 MHz, CD_2Cl_2 , 300 K): $\delta = 8.69$ (ddd, ${}^{3}J_{H,H} = 4.9, {}^{4}J_{H,H} = 1.8, {}^{5}J_{H,H} = 0.9 \text{ Hz}, 1 \text{ H}, \text{ Py}_{a}\text{-H6}), 7.80 \text{ (dt,}$ ${}^{3}J_{H,H} = 7.7, {}^{4}J_{H,H} = 1.9 \text{ Hz}, 1 \text{ H}, \text{Py}_{a}\text{-H4}), 7.73 \text{ (dt, } {}^{3}J_{H,H} = 7.8,$ $^{4}J_{H,H} = 1.6 \text{ Hz}, 2 \text{ H}, \text{ Py}_{b}\text{-H4}), 7.60 \text{ (d, }^{3}J_{H,H} = 4.9 \text{ Hz}, 2 \text{ H}, \text{ Py}_{b}\text{-H}$ H6), 7.37 (m, 3 H, Py-H3), 7.14 (t, ${}^{3}J_{H,H} = 7.0 \text{ Hz}$, 3 H, Py-H5), 5.50 (d[AB], ${}^{2}J_{H,H} = 15.4 \text{ Hz}, 2 \text{ H}, \text{ NC}H_{2}\text{Py}_{b}), 4.65$ (d[AB], $^{2}J_{H,H} = 15.6 \text{ Hz}, 2 \text{ H}, \text{ NC}H_{2}\text{Py}_{b}), 4.39 \text{ (s, 2 H, NC}H_{2}\text{Py}_{a}), 3.36$ (br.t, ${}^{3}J_{H,H} = 9.4 \text{ Hz}$, 2 H, $CH_{2}CH_{2}$), 3.22 (t, ${}^{3}J_{H,H} = 9.7 \text{ Hz}$, 2 H, CH_2CH_2), 1.94 (t, ${}^3J_{H,H} = 9.8 \text{ Hz}$, 2 H, CH_2CH_2), 1.85 (br.t, $^{3}J_{H,H} = 9.7 \text{ Hz}, 2 \text{ H}, CH_{2}CH_{2}) \text{ ppm}; ^{13}C\{^{1}H\} \text{ NMR (125 MHz},$ CD_3CN , 243 K): $\delta = 166.2$ (Py_b-C2), 154.6 (Py_a-C2), 150.8 (Py_a-C6), 150.4 (Py_b-C6), 138.8(Py_b-C4), 138.2 (Py_a-C4), 127.2 (Py_a-C3/ 5), 126.6 (Py_b-C3/5), 124.8 (Py_b-C3/5), 124.5 (Py_a-C3/5), 65.4 (NCH₂Py_b), 65.3 (NCH₂Py_a), 39.8 (br., CH₂CH₂), 37.3 (br., CH₂CH₂), 34.8 (CH₂CH₂), 30.3 (CH₂CH₂) ppm; elemental analysis

for $3PF_6$ ($C_{22}H_{26}F_6IrN_4P$; 683.66): calcd. C 38.65, H 3.83, N 8.20; found C 38.78, H 3.90, N 8.36 %.

Bis(ethene)[N-(2-pyridylmethyl)-N,N-bis(2-pyridylmethyl- κN)amine- κN [iridium(I) Tetraphenylborate (3BPh₄): Complex 3BPh₄ was obtained by the same procedure as 3PF₆, using NaBPh₄ instead of KPF₆.

(Ethene) [N, N, N-tris (2-pyridylmethyl-κN) a mine-κN]-iridium(1) Hexafluorophosphate (4PF₆): Complex 4PF₆ was synthesized according to the same procedure as bis(ethene) complex 3PF₆, but nitrogen was bubbled through the MeOH solution before the addition of KPF₆. Complex 4PF₆ was obtained as a yellow/orange powder. Yield: 83%. ¹H NMR (200 MHz, CD₃CN, 300 K): δ = 9.19 (d, ³J_{H,H} = 5.2 Hz, 1 H, Py_a-H6), 8.28 (d, ³J_{H,H} = 5.3 Hz, 2 H, Py_b-H6), 7.64 (t, ³J_{H,H} = 7.8 Hz, 3 H, Py-H4), 7.21 (m, 4 H, Py-H3 and Py_a-H5), 7.05 (t, ³J_{H,H} = 6.6 Hz, 2 H, Py_b-H5), 5.11 (d[AB], ²J_{H,H} = 15.3 Hz, 2 H, NCH₂Py_b), 4.83 (d[AB], ²J_{H,H} =

15.3 Hz, 2 H, NC H_2 Py_b), 4.69 (s, 2 H, NC H_2 Py_a), 1.28 (m, 4 H, C H_2 C H_2) ppm; ¹³C{¹H} NMR (75 MHz, CD₃CN, 300 K): δ = 165.5 (Py_b-C2), 161.1 (Py_a-C2), 152.4 (Py_a-C6), 151.4 (Py_b-C6), 137.8 (Py_a-C4), 136.3 (Py_b-C4), 125.8 (Py_b-C3/5), 124.6 (Py_a-C3/5), 123.4 (Py_b-C3/5), 122.3 (Py_a-C3/5), 71.6 (NCH₂Py_b), 65.9 (NCH₂Py_a), 4.3 (CH₂CH₂), 4.1 (CH₂CH₂) ppm. ESI-MS (THF): 511 [M – PF₆]⁺, 483 [M – CH₂CH₂ – PF₆]⁺; elemental analysis for 4PF₆ (C₂₀H₂₂F₆IrN₄P; 655.61): calcd. C 36.64, H 3.38, N 8.55; found C 36.63, H 3.44, N 8.66 %.

(Ethene)[N,N,N-tris(2-pyridylmethyl- κN) amine- κN]-iridium(I) Tetraphenylborate (4BPh₄): Complex 4BPh₄ was obtained by the same procedure as 4PF₆, using NaBPh₄ instead of KPF₆.

Bis(ethene) {3,11-dimethyl-3,11,17,18-tetraazatricyclo- $[11.3.1.1^{5,9}]$ octadeca-1(17),5(18),6,8,13,15-hexaene- $\kappa^4 N^1, N^2, N^3$ rhodium(I) Hexafluorophosphate (5PF₆): $[Rh(\mu-Cl)(C_2H_4)_2]_2$ (100 mg, 0.26 mmol) was added to a suspension of NaHCO₃ (100 mg, 1.2 mmol) in methanol (5 mL) at -20 °C. The reaction mixture was stirred for 15 minutes, after which N₄Me₂ (138 mg, 0.51 mmol) was added. After stirring for 5 minutes at -20 °C, the reaction mixture was cooled to -78 °C and stirred for 30 minutes. Undissolved material was removed by filtration. A solution of KPF₆ (100 mg, 0.54 mmol) in methanol (1 mL) was then added to the filtrate at -78 °C, causing the precipitation of a light yellow solid. After stirring for 1 hour, the solid was collected by filtration. Additional KPF₆ (60 mg, 0.33 mmol) was added to the filtrate. The solution was warmed to room temperature for two minutes, after which it was cooled to -78 °C again. This produced a second batch of solid, which was collected by filtration after stirring for 15 minutes. The combined solids were washed with methanol and dried under vacuum. Yield: 245 mg (83%). ¹H NMR (500 MHz, [D₆]acetone, 203 K): $\delta = 7.73$ (t, ${}^{3}J_{H,H} = 7.8$ Hz, 2 H, Py-H4), 7.37 (d, $^{3}J_{H,H} = 7.5 \text{ Hz}, 2 \text{ H}, \text{ Py-H}3/5), 7.28 (d, {}^{3}J_{H,H} = 7.8 \text{ Hz}, 2 \text{ H}, \text{ Py-H}3/5)$ H3/5), 6.06 (d[AB], ${}^{2}J_{H,H} = 14.1 \text{ Hz}$, 2 H, NC H_{2} Py), 5.17 (d[AB], $^{2}J_{H,H} = 16.7 \text{ Hz}, 2 \text{ H}, \text{ NC}H_{2}\text{Py}), 4.51 \text{ (d[AB]}, ^{2}J_{H,H} = 16.9 \text{ Hz}, 2$ H, NC H_2 Py), 4.46 (d[AB], $^2J_{H,H} = 14.1 \text{ Hz}$, 2 H, NC H_2 Py), 3.84 (s, 3 H, NC H_3), 3.22 (m, 2 H, C H_2 C H_2), 2.92 (br.t, $^3J_{H,H} = 10.3$ Hz, 2 H, CH_2CH_2), 2.53 (br.t, ${}^3J_{H,H} = 10.9 \text{ Hz}$, 2 H, CH_2CH_2), 2.25 (s, 3 H, NC H_3), 1.72 (m, 2 H, C H_2 C H_2) ppm; 13 C 1 H 13 NMR (100 MHz, [D₆]acetone, 243 K): $\delta = 160.0$ (Py-C2/6), 158.1 (Py-C2/6), 138.4 (Py-C4), 126.3 (Py-C3/5), 121.9 (Py-C3/5), 68.1 (NCH₂Py), 65.4 (NCH₂Py), 57.7 (br., CH₂CH₂), 52.6 (NCH₃), 46.6 (br., CH₂CH₂), 37.7 (NCH₃) ppm. ESI-MS (CH₃CN): 427 [M - PF_6]⁺, 399 [M - (CH₂CH₂) - PF_6]⁺.

(Ethene) {3,11-dimethyl-3,11,17,18-tetraazatricyclo[11.3.1.1^{5,9}]octadeca-1(17),5(18),6,8,13,15-hexaene- $\kappa^4 N^1, N^2, N^3, N^4$ rhodium(I) Hexafluorophosphate (6PF₆): After stirring 5PF₆ (245 mg, 0.43 mmol) in [D₆]acetone (10 mL) for 4 hours, diethyl ether (40 mL) was added. A red solid precipitated and was collected by filtration and washed with diethyl ether. The obtained brick-red solid was isolated by filtration, washed with diethyl ether and dried in vacuo. Yield 112 mg (48%). ¹H NMR (200 MHz, CD₃CN, 298 K): $\delta = 7.62$ (t, ${}^{3}J_{H,H} = 7.9$ Hz, 2 H, Py-H4), 7.11 (d, ${}^{3}J_{H,H} = 7.8 \text{ Hz}$, 4 H, Py-H3 and Py-H5), 4.01 (d[AB], ${}^{2}J_{H,H} =$ 15.1 Hz, 4 H, NC H_2 Py), 3.82 (d[AB], $^2J_{H,H} = 15.0$ Hz, 4 H, NCH_2Py), 2.54 (d, ${}^2J_{H,Rh} = 2.4 Hz$, 4 H, CH_2CH_2), 2.15 (d, $^{3}J_{H,Rh} = 1.3 \text{ Hz}, 6 \text{ H}, \text{ NC}H_{3}) \text{ ppm}; ^{13}\text{C}\{^{1}\text{H}\} \text{ NMR} (75 \text{ MHz},$ $[D_6]$ acetone, 297 K): $\delta = 155.4$ (Py-C2 and Py-C6), 136.6 (Py-C4), 121.3 (Py-C3 and Py-C5), 76.1 (NCH₂Py), 49.8 (NCH₃), 24.8 (d, $J_{\text{C.Rh}} = 18 \text{ Hz}, CH_2CH_2) \text{ ppm. ESI-MS (CH_3CN): 399 [M PF_6$]⁺, 371 [M - (CH₂CH₂) - PF₆]⁺.

(2-Peroxyethyl- $\kappa^2 C^I$, O^2)[N,N,N-tris(2-pyridylmethyl- κN)-amine- κN]rhodium(III) Tetraphenylborate (8aBPh₄): Compound

7BPh₄ was ground with a mortar and exposed to air at room temperature and was left in the dark for 2 days at atmospheric pressure.[11] 8aBPh₄ was obtained in > 90% yield, as determined by ¹H NMR spectroscopy. Crystals obtained from a 1,2-dichloroethane solution proved to be unsuitable for X-ray diffraction. However, the crystals obtained were used for elemental analysis. Both ¹H NMR spectroscopy and elemental analysis of these crystals showed that they contained 1.5 molecules of 1,2-dichloroethane per cation. ¹H NMR (300 MHz, CD₃CN, 297 K): $\delta = 8.75$ (d, ${}^{3}J_{H,H} = 5.4$ Hz, 1 H, Py_a-H6), 8.66 (d, ${}^{3}J_{H,H} = 5.5 \text{ Hz}$, 2 H, Py_b-H6), 7.81 (dt, $^{3}J_{H,H} = 7.8$, $^{4}J_{H,H} = 1.7$ Hz, 2 H, Py_b-H4), 7.69 (dt, $^{3}J_{H,H} = 7.8$, $^{4}J_{H,H} = 1.7 \text{ Hz}, 1 \text{ H}, Py_{a}\text{-H4}), 7.40 \text{ (d, }^{3}J_{H,H} = 8.0 \text{ Hz}, 2 \text{ H}, Py_{b}\text{-}$ H3), 7.35 (m, 3 H, Py_a-H5 and Py_b-H5), 7.28 (m, 8 H, BAr-H2), 7.16 (dt, ${}^{3}J_{H,H} = 7.8$, ${}^{4}J_{H,H} = 0.9$ Hz, 1 H, Py_a-H3), 6.99 (t, $^{3}J_{H,H} = 7.4 \text{ Hz}, 8 \text{ H}, \text{ BAr-H3}), 6.84 (t, {}^{3}J_{H,H} = 7.3 \text{ Hz}, 4 \text{ H}, \text{ BAr-H3})$ H4), 4.88 (d[AB], ${}^{2}J_{H,H} = 15.6 \text{ Hz}$, 2 H, NC H_{2} Py_b), 4.71 (d[AB], $^{2}J_{H,H} = 15.1 \text{ Hz}, 2 \text{ H}, \text{ NC}H_{2}\text{Py}_{b}), 4.57 \text{ (s, 2 H, NC}H_{2}\text{Py}_{a}), 3.25 \text{ (t,}$ $^{3}J_{H,H} = 6.1 \text{ Hz}, 2 \text{ H}, \text{ RhCH}_{2}\text{C}H_{2}\text{OO}), 2.57 \text{ (dt, } ^{3}J_{H,H} = 6.1,$ $^{2}J_{H,Rh} = 2.4 \text{ Hz}, 2 \text{ H}, RhCH_{2}CH_{2}OO) \text{ ppm}; ^{13}C\{^{1}H\} NMR$ (75 MHz, CD₃CN, 297 K): $\delta = 164.6$ (q, ${}^{1}J_{C,B} = 49.5$ Hz, BAr-C1), 162.7 (Py_b-C2), 158.6 (Py_a-C2), 150.1 (Py_b-C6), 149.5 (Py_a-C6), 139.4 (Py_a-C4), 139.3 (Py_b-C4), 136.5 (BAr-C2), 126.4 (q, $^{3}J_{\text{C,B}} = 2.8 \text{ Hz}, \text{ BAr-C3}, 125.5 \text{ (Py}_{\text{b}}\text{-C3)}, 125.4 \text{ (Py}_{\text{a}}\text{-C3)}, 124.2$ (Py_b-C5), 122.6 (BAr-C4), 121.9 (Py_a-C5), 72.9 (NCH₂Py_a), 70.2 $(N-CH_2-Py_b \text{ and } RhCH_2CH_2OO), 35.0 (d, {}^1J_{C,Rh} = 25.0 Hz,$ $RhCH_2CH_2OO)$ ppm. ESI-MS (CD₃CN): 453 [M - BPh₄]⁺, 425 $[M - CH_2CH_2 - BPh_4]^+$, 409 $[M - C_2H_4O - BPh_4]^+$, 393 $[M - C_2H_4O - BPh_4]^+$ $C_2H_4O_2 - BPh_4$, 391 [M - $C_2H_4O_2 - H_2 - BPh_4$]⁺; elemental analysis for 8aBPh₄· 1^{1} /₂C₂H₄Cl₂ (C₄₇H₄₈BCl₃N₄O₂Rh; 921.00): calcd. C 61.36, H 5.26, N 6.09; found C 61.36, H 5.44, N 6.17 %.

 $(2-\text{Peroxyethyl-}\kappa^2C^1, O^2)[N, N, N-\text{tris}(2-\text{pyridylmethyl-}\kappa N)$ amine-κ/VJrhodium(III) Hexafluorophosphate (8aPF₆/8bPF₆): Complex 7PF₆ was ground with a mortar and exposed to air at room temperature and was left in the dark for 2 days at atmospheric pressure. [11] A mixture of 8aPF₆ and 8bPF₆ in an approximate ratio of 1:1 was obtained in > 90% yield, as determined by ¹H NMR spectroscopy. The data for 8bPF₆ are given: ¹H NMR (500 MHz, CD₃CN, 298 K): $\delta = 8.86$ (d, ${}^{3}J_{H,H} = 5.4$ Hz, 1 H, Py_a-H6), 8.56 (d, ${}^{3}J_{H,H} = 5.4 \text{ Hz}$, 2 H, Py_b-H6), 7.83 (dt, ${}^{3}J_{H,H} = 7.8$, ${}^{4}J_{H,H} =$ 1.4 Hz, 2 H, Py_b-H4),7.63 (t, ${}^{3}J_{H,H} = 7.3$ Hz, 1 H, Py_a-H4), 7.48 (d, ${}^{3}J_{H,H} = 7.8 \text{ Hz}$, 2 H, Py_b-H3), 7.35 (t, ${}^{3}J_{H,H} = 6.6 \text{ Hz}$, 2 H, Py_b-H5), 7.25 (m, 1 H, Py_a-H5), 7.14 (d, $^3J_{H,H} = 7.8$ Hz, 1 H, Py_a-H5) H3), 5.12 (d[AB], ${}^{2}J_{H,H} = 15.6 \text{ Hz}$, 2 H, NC H_{2} Py_b), 5.00 (d[AB], $^{2}J_{H,H} = 15.6 \text{ Hz}, 2 \text{ H}, \text{ NC}H_{2}\text{Py}_{b}), 4.80 \text{ (s, 2 H, NC}H_{2}\text{Py}_{a}), 3.55$ $(dt, {}^{3}J_{H,H} = 6.1, {}^{2}J_{H,Rh} = 2.4 \text{ Hz}, 2 \text{ H}, RhCH_{2}CH_{2}OO), 3.41 (t,$ $^{3}J_{\text{H.H}} = 6.1 \text{ Hz}, 2 \text{ H}, \text{ RhCH}_{2}\text{C}H_{2}\text{OO}) \text{ ppm}; ^{13}\text{C}\{^{1}\text{H}\} \text{ NMR}$ $(50 \text{ MHz}, \text{ CD}_3\text{CN}, 300 \text{ K}): \delta = 164.6 \text{ (Py}_b\text{-C2)}, 162.7 \text{ (Py}_a\text{-C6)},$ 152.5 (Py_a-C6), 150.5 (Py_b-C6), 139.7 (Py_b-C4), 138.7 (Py_a-C4), 125.9 (Py_b-C3), 125.5 (Py_a-C3), 124.6 (Py_b-C5), 122.6 (Py_a-C5), 72.8 (RhCH₂CH₂OO), 67.9 (NCH₂Py_b), 65.4 (NCH₂Py_a), 44.8 (d, ${}^{1}J_{\text{C.Rh}} = 28.8 \text{ Hz}, \text{ Rh}CH_{2}CH_{2}OO) \text{ ppm. ESI-MS (CD}_{3}CN): 453$ $[M - PF_6]^+$, 425 $[M - CH_2CH_2 - PF_6]^+$, 409 $[M - C_2H_4O PF_6$]+, 393 [M - $C_2H_4O_2$ - PF_6]+, 391 [M - $C_2H_4O_2$ - H_2 - $PF_6]^+$.

(2-Peroxyethyl-κ² C^I , O^2)[N, N, N-tris(2-pyridylmethyl-κN)-amine-κN[iridium(III) Tetraphenylborate (10aBPh₄): Compound 4BPh₄ was ground with a mortar and exposed to air for 5 days. 10aBPh₄ was obtained in > 90% yield, as determined by 1 H NMR spectroscopy. $^{[11]}$ 1 H NMR (500 MHz, CD₃CN, 243 K): $\delta = 8.67$ (m, 3 H, Py-H6), 7.77 (dt, $^3J_{\rm H,H} = 7.8$, $^4J_{\rm H,H} = 1.6$ Hz, 2 H, Py_b-H4), 7.68 (dt, $^3J_{\rm H,H} = 7.8$, $^4J_{\rm H,H} = 1.6$ Hz, 1 H, Py_a-H4), 7.38 (d, $^3J_{\rm H,H} = 7.7$ Hz, 2 H, Py_b-H3), 7.30 (m, 3 H, Py-H5), 7.26 (m, 8 H, BAr-H2), 7.16 (d, $^3J_{\rm H,H} = 7.7$ Hz, 1 H, Py_a-H3), 6.98 (t, $^3J_{\rm H,H} = 7.7$ H

FULL PAPER ______ A. W. Gal et al.

7.5 Hz, 8 H, BAr-H3), 6.82 (t, ${}^3J_{\rm H,H} = 7.3$ Hz, 4 H, BAr-H4), 4.92 (d[AB], ${}^2J_{\rm H,H} = 15.4$ Hz, 2 H, NC H_2 Py_b), 4.67 (d[AB], ${}^2J_{\rm H,H} = 15.4$ Hz, 2 H, NC H_2 Py_b), 4.56 (s, 2 H, NC H_2 Py_a), 2.54 (t, ${}^3J_{\rm H,H} = 6.2$ Hz, 2 H, RhCH₂CH₂OO), 2.03 (t, ${}^3J_{\rm H,H} = 6.2$ Hz, 2 H, RhCH₂CH₂OO) ppm; 13 C{ 1 H} NMR (125 MHz, CD₃CN, 243 K): $\delta = 164.8$ (Py_b-C2), 163.9 (q, ${}^{1}J$ (C,B)= 49.2 Hz, BAr-C1), 159.3 (Py_a-C2), 149.0 (Py_b-C6), 148.1 (Py_a-C6), 138.5 (Py_a-C4), 138.0 (Py_b-C4), 135.8 (q, ${}^{2}J_{\rm C,B} = 1.3$ Hz, BAr-C2), 126.1 (q, ${}^{3}J_{\rm C,B} = 2.9$ Hz, BAr-C3), 124.9 (Py_b-C3/5 and Py_a-C3/5), 123.9 (Py_b-C3/5), 122.1 (BAr-C4), 121.3 (Py_a-C3/5), 72.1 (NCH₂Py_b), 71.8 (NCH₂Py_a or IrCH₂CH₂OO), 71.1 (NCH₂Py_a or IrCH₂CH₂OO), 15.8 (IrCH₂CH₂OO) ppm.

 $(2-\text{Peroxyethyl-}\kappa^2C^1, O^2)[N, N, N-\text{tris}(2-\text{pyridylmethyl-}\kappa N)$ amine-κ/Njiridium(III) Hexafluorophosphate (10aPF₆/10bPF₆): Compound 4PF₆ was ground with a mortar and exposed to air for 5 days.^[11] A mixture of the isomeric 3-irida-1,2-dioxolanes 10aPF₆ and 10bPF₆ in an approximate ratio of 2:5 was formed in > 90%yield, as determined by ¹H NMR spectroscopy. The data for **10b**PF₆ are given: ¹H NMR (500 MHz, CD₃CN, 243 K): $\delta = 8.93$ $(d, {}^{3}J_{H,H} = 5.5 \text{ Hz}, 1 \text{ H}, Py_a\text{-H6}), 8.58 (d, {}^{3}J_{H,H} = 5.13 \text{ Hz}, 2 \text{ H},$ Py_b -H6), 7.75 (dt, ${}^3J_{H,H} = 7.8$, ${}^4J_{H,H} = 1.3$ Hz, 2 H, Py_b -H4), 7.56 (dt, ${}^{3}J_{H,H} = 7.8$, ${}^{4}J_{H,H} = 1.3$ Hz, 1 H, Py_a-H4), 7.42 (d, ${}^{3}J_{H,H} =$ 8.1 Hz, 2 H, Py_b-H3), 7.27 (t, ${}^{3}J_{H,H} = 6.2$ Hz, 2 H, Py_b-H5), 7.15 (m, 2 H, Py_a-H5 and Py_a-H3), 5.04 (d[AB], ${}^{2}J_{H,H} = 15.4$ Hz, 2 H, NCH_2Py_b , 4.94 (d[AB], ${}^2J_{H,H} = 15.8 \text{ Hz}$, 2 H, NCH_2Py_b), 4.76 (s, 2 H, NC H_2 Py_a), 2.69 (t, ${}^3J_{H,H}$ = 6.7 Hz, 2 H, IrC H_2 CH₂OO), 2.63 $(t, {}^{3}J_{H,H} = 6.7 \text{ Hz}, 2 \text{ H}, IrCH_{2}CH_{2}OO) \text{ ppm.} {}^{13}C \text{ NMR (125 MHz},$ CD₃CN, 243 K): $\delta = 165.9$ (Py_b-C2), 162.6 (Py_a-C2), 152.4 (Py_a-C6), 149.5 (Py_b-C6), 138.7 (Py_b-C4), 137.3 (Py_a-C4), 125.3 (Py_b-C3/5), 125.1 (Py_a-C3/5), 124.2 (Py_b-C3/5), 121.8 (Py_a-C3/5), 71.6 (IrCH₂CH₂OO), 69.2 (NCH₂Py_b), 66.4 (NCH₂Py_a), 23.9 (IrCH₂-CH₂OO) ppm.

 $(2-\text{Peroxyethyl-}\kappa^2C^1, O^2)$ {3,11-dimethyl-3,11,17,18-tetraazatricyclo[11.3.1.1^{5,9}]octadeca-1(17),5(18),6,8,13,15hexaene- $\kappa^4 N^1, N^2, N^3, N^4$ }rhodium(III) Hexafluorophosphate (16PF₆): Complex 6PF₆ was exposed to an oxygen atmosphere at room temperature for 5 days at atmospheric pressure.[11] The color changed from red to yellow ochre. ¹H NMR (200 MHz, CD₃CN, 298 K): $\delta = 7.75$ (t, ${}^{3}J_{H,H} = 7.9$ Hz, 1 H, Py-H4), 7.66 (t, ${}^{3}J_{H,H} = 7.9$ Hz, 1 H, Py-H4), 7.28 (d, ${}^{3}J_{H,H} = 7.8 \text{ Hz}$, 2 H, Py-H3/5), 7.14 (d, $^{3}J_{H,H} = 7.8 \text{ Hz}, 2 \text{ H}, \text{ Py-H3/5}, 4.57 (d[AB], <math>^{2}J_{H,H} = 15.3 \text{ Hz}, 2 \text{ H},$ NCH_2Py), 4.36 (d[AB], ${}^2J_{H,H} = 16.6 \text{ Hz}$, 2 H, NCH_2Py), 4.16 $(d[AB], {}^{2}J_{H,H} = 15.2 \text{ Hz}, 4 \text{ H}, NCH_{2}Py), 3.66 (dt, {}^{3}J_{H,H} = 6.4,$ ${}^{3}J_{H,Rh} = 0.7 \text{ Hz}, 2 \text{ H}, \text{ RhCH}_{2}\text{C}H_{2}\text{OO}), 2.90 \text{ (dt, } {}^{3}J_{H,H} = 6.5,$ $^{2}J_{H,Rh} = 2.5 \text{ Hz}, 2 \text{ H}, RhCH_{2}CH_{2}OO), 2.71 (d, {}^{3}J_{H,Rh} = 1.2 \text{ Hz},$ 6 H, NCH₃) ppm; ${}^{13}C{}^{1}H$ } NMR (125 MHz, CD₃CN, 243 K): $\delta =$ 157.0 (Py-C2/6), 155.0 (Py-C2/6), 139.3 (Py-C4), 138.2 (Py-C4), 121.6 (Py-C3/5), 120.8 (Py-C3/5), 74.4 (NCH₂Py), 72.5 (NCH₂Py), 71.7 (RhCH₂CH₂OO), 50.1 (NCH₃), 30.3 (d, $J_{C,Rh} = 25 \text{ Hz}$, $RhCH_2CH_2OO)$ ppm. ESI-MS (CH₃CN): 431 [M - PF₆]⁺.

(Formylmethyl-κ C^I)(hydroxy)[N,N,N-tris(2-pyridylmethyl-κN)amine-κN|rhodium(III) Tetraphenylborate (9aBPh₄). Method A: A stirred solution of 8aBPh₄ in CD₃CN under nitrogen was exposed to the glass-filtered light of a high pressure mercury vapor lamp[³⁴] for 90 minutes at -30 °C. 9aBPh₄ was obtained in > 90% yield, as determined by ¹H NMR spectroscopy.

Method B: HBAr₄^F (5.5 mg, 5.4 μmol) was added to a solution of **8a**BPh₄ (41.8 mg, 54 μmol) in CD₃CN (1 mL) under N₂. **9a**BPh₄ was obtained in approximately 70% yield in approximately 1 hour, as determined by ¹H NMR spectroscopy. ¹H NMR (200 MHz, CD₃CN, 300 K): δ = 9.26 (t, ${}^{3}J_{\rm H,H}$ = 5.0 Hz, 1 H, RhCH₂CHO), 9.21 (br.d, ${}^{3}J_{\rm H,H}$ = 6.0 Hz, 1 H, Py_a-H6), 8.62 (br.d, ${}^{3}J_{\rm H,H}$ =

5.6 Hz, 2 H, Py_b-H6), 7.84 (dt, ${}^{3}J_{H,H} = 7.8$, ${}^{4}J_{H,H} = 1.6$ Hz, 2 H, Py_b-H4), 7.73 (dt, ${}^3J_{H,H} = 7.8$, ${}^4J_{H,H} = 1.6$ Hz, 1 H, Py_a-H4), 7.32 (m, 6 H, Py-H3 and Py-H5), 7.27 (m, 8 H, BAr-H2), 6.99 (t, $^{3}J_{H,H} = 7.4 \text{ Hz}, 8 \text{ H}, \text{ BAr-H3}), 6.83 \text{ (t, } ^{3}J_{H,H} = 7.2 \text{ Hz}, 4 \text{ H}, \text{ BAr-H3})$ H4), 5.01 (d[AB], ${}^{2}J_{H,H} = 15.9 \text{ Hz}$, 2 H, NC H_{2} Py_b), 4.71 (d[AB], $^{2}J_{H,H} = 14.9 \text{ Hz}, \text{ NC}H_{2}\text{Py}_{b}$, 4.67 (s, 2 H, NC $H_{2}\text{Py}_{a}$), 2.69 (dd, ${}^{3}J_{H,H} = 5.1$, ${}^{2}J_{H,Rh} = 2.9 \text{ Hz}$, 2 H, RhC H_{2} CHO) ppm; 13 C{ 1 H} NMR (125 MHz, CD₃CN, 243 K): $\delta = 209.0$ (RhCH₂CHO), 163.9 $(q, {}^{1}J_{C,B} = 49.2 \text{ Hz}, BAr-C1), 162.4 (Py_b-C2), 159.0 (Py_a-C2), 149.9$ (Py_b-C6), 147.2 (Py_a-C6), 139.3 (Py_b-C4), 139.2 (Py_a-C4), 135.7 (BAr-C2), 126.1 (q, ${}^{3}J_{C,B} = 2.7 \text{ Hz}$, BAr-C3), 125.4 (Py_b-C5/C3), 124.9 (Py_a-C5/C3), 124.4 (Py_b-C5/C3), 122.1 (BAr-C4), 121.2 (Py_a-C5/C3), 70.7 (NCH₂Py_a), 68.3 (NCH₂Py_b), 26.9 (d, ${}^{1}J_{C,Rh} =$ 21.0 Hz, RhCH₂CHO) ppm. ESI-MS (CD₃CN): 453 [M - BPh₄]⁺, 435 $[M - H_2O - BPh_4]^+$, 425 $[M - C_2H_4 - BPh_4]^+$, 409 $[M - C_2H_4]^+$ $C_2H_4O - BPh_4^{+}$, 393 [M - $C_2H_4O_2 - BPh_4^{+}$, 391 [M - $C_2H_4O_2$ $- H_2 - BPh_4$]⁺. IR (KBr): $\tilde{v} = 1655 \text{ cm}^{-1}$.

(Formylmethyl- κC^{I})(hydroxy)-[N,N,N-tris(2-pyridylmethylκN)amine-κN]rhodium(III) Hexafluorophosphate (9aPF₆/9bPF₆): Solid 8aPF₆/8bPF₆ was exposed to a N₂ atmosphere saturated with H₂O for three days at room temperature. A mixture of 9aPF₆ and **9bPF**₆ in an approximate ratio of 1:1 was obtained in > 90% yield, according to ¹H NMR spectroscopy. The data for **9b**PF₆ are given: ¹H NMR (500 MHz, CD₃CN, 243 K): $\delta = 9.98$ (t, ${}^{3}J_{H,H} = 4.9$ Hz, 1 H, RhCH₂CHO), 8.68 (d, ${}^{3}J_{H,H} = 5.5$ Hz, 2 H, Py_b-H6), 8.53 (d, ${}^{3}J_{H,H} = 5.5 \text{ Hz}, 1 \text{ H}, Py_a-H6), 7.84 (m, 2 H, Py_b-H4), 7.66 (dt,$ ${}^{3}J_{H,H} = 7.7, {}^{4}J_{H,H} = 1.5 \text{ Hz}, 1 \text{ H}, Py_a-H4), 7.48 (d, {}^{3}J_{H,H} = 8.2 \text{ Hz},$ 2 H, Py_b-H3), 7.36 (t, ${}^{3}J_{H,H} = 6.6 \text{ Hz}$, 2 H, Py_b-H5), 7.28 (t, ${}^{3}J_{H,H} = 6.6 \text{ Hz}, 1 \text{ H}, Py_a\text{-H5}), 7.17 \text{ (d, } {}^{3}J_{H,H} = 8.8 \text{ Hz}, 1 \text{ H}, Py_a\text{-}$ H3), 5.39 (d[AB], ${}^{2}J_{H,H} = 15.0 \text{ Hz}$, 2 H, NC H_{2} Py_b), 4.88 (s, 2 H, NCH_2Py_a), 4.76 (d[AB], $^2J_{H,H} = 15.0 \text{ Hz}$, 2 H, NCH_2Py_b), 3.47 (dd, ${}^{3}J_{H,H} = 4.8$, ${}^{2}J_{H,Rh} = 2.9 \text{ Hz}$, 2 H, RhC H_{2} CHO) ppm; ¹³C{¹H} NMR (125 MHz, CD₃CN, 243 K): δ = 210.8 (d, ²J_{C,Rh} = 9.6 Hz, RhCH₂CHO), 165.0 (Py_b-C2), 163.5 (Py_a-C2), 151.5 (Py_b-C6), 150.2 (Py_a-C6), 139.6 (Py_b-C4), 138.8 (Py_a-C4), 125.4 (Py_b-C5/C3), 125.1 (Py_a-C5/C3), 124.4 (Py_b-C5/C3), 122.1 (Py_a-C5/C3), 66.4 (NCH₂Py_b), 66.2 (NCH₂Py_a), 34.5 (d, ${}^{1}J_{C,Rh} = 25.0 \text{ Hz}$, $RhCH_2CHO)$ ppm. ESI-MS (CH₃CN): 453 [M - PF₆]⁺.

(Formylmethyl- κC^{I})(aqua)[N,N,N-tris(2-pyridylmethyl- κN)amine-κN]rhodium(III) Tetraphenylborate Tetra[3,5-bis(trifluoromethyl)phenyl]borate (20a[BPh₄][BAr^F₄]): HBAr^F₄ (57 mg, 0.11 mmol) was added to a solution of 8aBPh₄ (40 mg, 0.1 mmol) in CD₃CN (1.0 mL) under N₂. **20a**(BPh₄)(BAr₄^F) was obtained in approximately 85% yield, as determined by ¹H NMR spectroscopy. ¹H NMR (200 MHz, CD₃CN, 300 K): $\delta = 9.51$ (t, ${}^{3}J_{H,H} = 4.8$ Hz, 1 H, RhCH₂CHO), 8.96 (d, ${}^{3}J_{H,H} = 5.5 \text{ Hz}$, 1 H, Py_a-H6), 8.52 (d, $^{3}J_{H,H} = 5.7 \text{ Hz}, 2 \text{ H}, \text{ Py}_{b}\text{-H6}), 7.95 \text{ (dt, } ^{3}J_{H,H} = 7.8, ^{4}J_{H,H} =$ 1.6 Hz, Py_b -H4), 7.81 (dt, ${}^3J_{H,H} = 7.8$, ${}^4J_{H,H} = 1.6$ Hz, Py_a -H4),7.73 (m, 8 H, BAr₄^F-H2), 7.68 (s, 4 H, BAr₄^F-H4), 7.6–7.4 (m, 5 H, Py_b-H3, Py_b-H5 and Py_a-H3/5), 7.33 (m, 8 H, BAr-H2), 7.21 (m, 1 H, Py_a-H3/5), 7.01 (t, ${}^{3}J_{H,H} = 7.4$ Hz, 8 H, BAr-H3), 6.85 (t, $^{3}J_{H,H} = 6.9 \text{ Hz}, 4 \text{ H}, \text{ BAr-H4}), 5.15 (d[AB], ^{2}J_{H,H} = 16.4 \text{ Hz}, 2 \text{ H},$ NCH_2Py_b), 4.82 (s, 2 H, NCH_2Py_a), 4.69 (d[AB], $^2J_{H,H} = 16.6$ Hz, 2 H, NC H_2 Py_b), 3.05 (dd, ${}^3J_{H,H} = 4.9$, ${}^2J_{H,Rh} = 2.7$ Hz, 2 H, RhCH₂CHO) ppm; ¹³C{¹H} NMR (125 MHz, CD₃CN, 243 K): $\delta = 206.7 \text{ (d, } ^2J_{\text{C,Rh}} = 1.9 \text{ Hz, RhCH}_2\text{CHO)}, 164.0 \text{ (q, } ^1J_{\text{C,B}} =$ 49.2 Hz, BAr-C1), 161.9 (q, ${}^{1}J_{C,B}$ = 49.8 Hz, BAr^F-C1), 161.6 (Py_b-C2), 158.0 (Py_a-C2), 151.5 (Py_b-C6), 148.7 (Py_a-C6), 140.9 (Py_b-C4), 140.4 (Pya-C4), 135.8 (BAr-C2), 134.9 (BArF-C2), 129.0 (qq, $^{2}J_{C,F} = 31.4, \,^{3}J_{C,B} = 2.9 \,\text{Hz}, \, \text{BAr}^{\text{F}}\text{-C3}, \, 126.4 \, (\text{Py}_{\text{b}}\text{-C5/C3}), \, 126.2$ $(q, {}^{3}J_{C,B} = 2.6 \text{ Hz}, BAr-C3), 125.8 (Py_a-C5/C3), 125.4 (Py_b-C5/C3),$ $124.6 \text{ (q, }^{1}J_{C.F} = 271.9 \text{ Hz, BAr}^{F}\text{-CF}_{3}), 122.3 \text{ (BAr-C4)}, 122.1 \text{ (Py}_{a}\text{-}$ C5/C3), 73.5 (NCH₂Py_a), 69.6 (NCH₂Py_b), 27.8 (d, ${}^{1}J_{C,Rh}$ =

20.4 Hz, Rh*C*H₂CHO) ppm. (The signal for BAr^F-C4 is obscured by one of the solvent signals). ESI-MS (CH₃CN): 227 [M - BPh₄ - BAr^F₄]²⁺, 218 [M - H₂O - BPh₄ - BAr^F₄]²⁺.

(Formylmethyl- κC^{I})(hydroxy)[N,N,N-tris(2-pyridylmethylκN)amine-κN]iridium(III) Tetraphenylborate (11aBPh₄): A solution of 10aBPh₄ (85.2 mg, 99 µmol) in CH₃CN (1 mL) was stirred at room temperature. After 4 hours, diethyl ether was added and a yellow solid precipitated. After filtration, the solid was washed with diethyl ether and dried in vacuo. Yield: 49.1 mg (58%). ¹H NMR (500 MHz, CD₃CN, 298 K): $\delta = 9.25$ (br.d, ${}^{3}J_{H,H} = 5.7$ Hz, 1 H, Py_a-H6), 9.21 (t, ${}^{3}J_{H,H} = 5.1 \text{ Hz}$, 1 H, IrCH₂CHO), 8.71 (d, $^{3}J_{H,H} = 5.7 \text{ Hz}, 2 \text{ H}, \text{ Py}_{b}\text{-H6}), 7.78 (dt, <math>^{3}J_{H,H} = 7.8, ^{4}J_{H,H} =$ 1.5 Hz, 2 H, Py_b-H4), 7.68 (dt, ${}^{3}J_{H,H} = 7.8$, ${}^{4}J_{H,H} = 1.6$ Hz, 1 H, Py_a-H4), 7.4-7.1 (m, 6 H, Py-H3 and Py-H5), 7.29 (m, 8 H, BAr-H2), 7.00 (t, ${}^{3}J_{H,H} = 7.4 \text{ Hz}$, 8 H, BAr-H3), 6.84 (t, ${}^{3}J_{H,H} = 7.2 \text{ Hz}$, 4 H, BAr-H4), 4.86 (s, 2 H, NCH_2Py_b), 4.85 (s, 2 H, NCH_2Py_b), 4.56 (s, 2 H, NC H_2 Py_a), 3.07 (d, $^3J_{H,H} = 5.3$ Hz, 2 H, IrC H_2 CHO) ppm; ${}^{13}C\{{}^{1}H\}$ NMR (125 MHz, CD₃CN, 298 K): $\delta = 209.4$ $(IrCH_2CHO)$, 165.8 $(Py_b - C2)$, 164.6 $(q, {}^1J)$ (C,B) = 49.3 Hz, BAr-C1), 160.8 (Py_a-C2), 149.7 (Py_b-C6), 146.3 (Py_a-C6), 139.2 (Py_a-C4), 139.0 (Py_b-C4), 136.5 (BAr-C2), 126.4 (q, ${}^{3}J_{C,B} = 2.8 \text{ Hz}$, BAr-C3), 125.7 (Py_b-C3/5), 125.1 (Py_a-C3/5), 124.7 (Py_b-C3/5), 122.6 (BAr-C4), 121.5 (Py_a-C3/5), 72.9 (NCH₂Py_a), 71.4 (NCH₂Py_b), 16.3 (IrCH₂CHO) ppm. ESI-MS (CH₃CN): 543 [M - BPh_4^{+} , 525 [M - H_2O - BPh_4^{+} , 499 [M - C_2H_4O - BPh_4^{+} , $483 [M - C_2H_4O_2 - BPh_4]^+$, $391 [M - CH_2C_5H_4N - H_4O_2 - Ph_4]^+$ BPh_4]⁺. IR (KBr): $\tilde{v} = 1654 \text{ cm}^{-1}$.

(Formylmethyl- κC^{I})(hydroxy)[N,N,N-tris(2-pyridylmethylκN)amine-κN]iridium(III) Hexafluorophosphate (11aPF₆/11bPF₆): 11aPF₆/11bPF₆ was prepared by a procedure similar to that of 11aBPh₄, using 10aPF₆/10bPF₆ instead of 10aBPh₄. Yield: 93%. ¹H NMR (500 MHz, CD₃CN, 298 K): $\delta = 10.11$ (t, ${}^{3}J_{H,H} = 5.0$ Hz, 1 H, IrCH₂CHO), 8.73 (d, ${}^{3}J_{H,H} = 5.9 \text{ Hz}$, 3 H, Py-H6), 7.81 (dt, ${}^{3}J_{H,H} = 7.7, {}^{4}J_{H,H} = 1.5 \text{ Hz}, 2 \text{ H}, \text{Py}_{b}\text{-H4}), 7.61 (dt, {}^{3}J_{H,H} = 7.7,$ $^{4}J_{H,H} = 1.5 \text{ Hz}, 1 \text{ H}, \text{ Py}_{a}\text{-H4}), 7.48 \text{ (d, }^{3}J_{H,H} = 8.1 \text{ Hz}, 2 \text{ H}, \text{ Py}_{b}\text{-}$ H3), 7.30 (t, ${}^{3}J_{H,H}$ = 6.4 Hz, 2 H, Py_b-H5), 7.23 (t, ${}^{3}J_{H,H}$ = 6.8 Hz, 1 H, Py_a-H5), 7.17 (d, ${}^{3}J_{H,H} = 7.7$ Hz, 1 H, Py_a-H3), 5.40 (d, $^{2}J_{H,H} = 15.0 \text{ Hz}, 2 \text{ H}, \text{ NC}H_{2}\text{Py}_{b}), 4.82 \text{ (s, 2 H, NC}H_{2}\text{Py}_{a}), 4.77 \text{ (d, s)}$ $^{2}J_{H,H} = 14.7 \text{ Hz}, 2 \text{ H}, \text{ NC}H_{2}\text{Py}_{b}, 3.66 \text{ (d, }^{3}J_{H,H} = 4.8 \text{ Hz}, 2 \text{ H},$ IrC H_2 CHO) ppm; ¹³C{¹H} NMR (125 MHz, CD₃CN, 300 K): δ = 211.2 (IrCH₂CHO), 167.1 (Py_b-C2), 164.9 (Py_a-C2), 152.0 (Py_b-C6), 151.1 (Py_a-C6), 139.5 (Py_b-C4), 138.4 (Py_a-C4), 125.9 (Py_b-C3/5), 125.7 (Py_a-C3/5), 124.5 (Py_b-C3/5), 122.2 (Py_a-C3/5), 69.3 (NCH₂Py_a), 68.6 (NCH₂Py_b), 20.7 (IrCH₂CHO) ppm. ESI-MS (CH_3CN) : 543 $[M - PF_6]^+$, 541 $[M - H_2 - PF_6]^+$.

(Formylmethyl- κC^{I})(hydroxy){3,11-dimethyl-3,11,17,18tetraazatricyclo[11.3.1.1^{5,9}]octadeca-1(17),5(18),6,8,13,15hexaene- $\kappa^4 N^1, N^2, N^3, N^4$ }rhodium(III) Hexafluorophosphate (17PF₆): Solid 16PF₆ was put under a nitrogen atmosphere saturated with H₂O vapor for 4 days. The product was dried in vacuo. ¹H NMR (400 MHz, CD₃CN, 297 K): $\delta = 9.57$ (t, ${}^{3}J_{H,H} = 5.4$ Hz, 1 H, CHO), 7.77 (t, ${}^{3}J_{H,H} = 7.8 \text{ Hz}$, 1 H, Py-H4), 7.66 (t, ${}^{3}J_{H,H} =$ 8.0 Hz, 1 H, Py-H4), 7.29 (d, ${}^{3}J_{H,H} = 8.0$ Hz, 2 H, Py-H3/5), 7.18 $(d, {}^{3}J_{H,H} = 8.0 \text{ Hz}, 2 \text{ H}, \text{ Py-H3/5}), 4.76 (d[AB], {}^{2}J_{H,H} = 16.5 \text{ Hz},$ 2 H, NC H_2 Py), 4.51 (d[AB], ${}^2J_{H,H} = 16.5$ Hz, 2 H, NC H_2 Py), 4.30 $(d[AB], {}^{2}J_{H,H} = 16.5 \text{ Hz}, 2 \text{ H}, NCH_{2}Py), 4.29 (d[AB], {}^{2}J_{H,H} =$ 15.9 Hz, 2 H, NC H_2 Py), 3.14 (dd, ${}^3J_{H,H} = 5.3$, ${}^3J_{H,Rh} = 3.2$ Hz, 1 H, RhC H_2 CHO), 2.95 (s, 6 H, NC H_3) ppm; ¹³C{¹H} NMR (125 MHz, CD₃CN, 243 K): $\delta = 207.7$ (RhCH₂CHO), 157.4 (Py-C2/6), 155.7 Py-C2/6), 139.9 (Py-C4), 138.7 (Py-C4), 121.4 (Py-C3/ 5), 74.7 (NCH₂Py), 72.6 (NCH₂Py), 50.8 (NCH₃), 33.4 (d, ${}^{1}J_{CRh}$ = 21.2 Hz, RhCH2CHO) ppm. FAB-MS (NPOE, CH3CN): 431 [M - PF_6]⁺, ESI-MS (CH₃CN): 431 [M - PF_6]⁺, 413 [M - H_2O - PF_6]⁺, 287 [M - C_2H_4O - PF_6]⁺, 371 [M - $C_2H_4O_2$ - PF_6]⁺, 369 [M - $C_2H_4O_2$ - H_2 - PF_6]⁺. IR (CD₃CN): \tilde{v} = 1651 cm⁻¹.

(Formylmethyl- κC^I)(hydrogen carbonate)[N,N,N-tris(2-pyridylmethyl-κN)amine-κN]rhodium(III) Tetraphenylborate (21aBPh₄): A solution of 9aBPh4 was left standing under a CO2 atmosphere. 21aBPh₄ was formed within 5 minutes in a quantitative yield, according to ¹H NMR spectroscopy. Isolation of **21a**BPh₄ was not possible, since the insertion of CO2 is a reversible reaction. Precipitation and filtration led to the isolation of 9aBPh₄. ¹H NMR (200 MHz, CD₃CN, 298 K): $\delta = 9.53$ (t, ${}^{3}J_{H,H} = 4.6$ Hz, 1 H, RhCH₂CHO), 8.99 (d, ${}^{3}J_{H,H} = 4.8 \text{ Hz}$, 1 H, Py_a-H6), 8.86 (d, ${}^{3}J_{H,H} = 5.8 \text{ Hz}, 2 \text{ H}, \text{ Py}_{b}\text{-H6}), 7.85 (dt, {}^{3}J_{H,H} = 7.8, {}^{4}J_{H,H} =$ 1.6 Hz, 2 H, Py_b-H4), 7.73 (dt, ${}^{3}J_{H,H} = 7.7$, ${}^{4}J_{H,H} = 1.6$ Hz, 1 H, Py_a-H4), 7.5-7.2 (m, 5 H, Py-H5 and Py_b-H3), 7.29 (m, 8 H, BAr-H2), 7.15 (d, ${}^{3}J_{H,H} = 7.9$ Hz, 1 H, Py_a-H3), 6.99 (t, ${}^{3}J_{H,H} = 7.4$ Hz, 8 H, BAr-H3), 6.84 (t, ${}^{3}J_{H,H} = 7.2$ Hz, 4 H, BAr-H4), 4.99 (d[AB], $^{2}J_{H,H} = 16.2 \text{ Hz}, 2 \text{ H}, \text{ NC}H_{2}\text{Py}_{b}), 4.58 \text{ (s, 2 H, NC}H_{2}\text{Py}_{a}), 4.50$ $(d[AB], {}^{2}J_{H,H} = 15.8 \text{ Hz}, 2 \text{ H}, NCH_{2}Py_{b}), 3.23 (dd, {}^{3}J_{H,H} = 4.8,$ $^{2}J_{H,Rh} = 2.5 \text{ Hz}, 2 \text{ H}, \text{RhC}H_{2}\text{CHO}) \text{ ppm}; ^{13}\text{C}\{^{1}\text{H}\} \text{ NMR}$ (50 MHz, CD₃CN): $\delta = 210.1$ (RhCH₂CHO), 164.6 (q, ${}^{1}J_{C,B} =$ 49.3 Hz, BAr-C1), 162.3 (Py_b-C2), 158.4 (Py_a-C2), 152.2 (Py_b-C6), 148.4 (Py_a-C6), 140.4 (Py_b-C4), 140.1 (Py_a-C4), 136.5 (BAr-C2), $126.40 \text{ (q, }^{3}J_{C,B} = 2.6 \text{ Hz, BAr-C3)}, 125.9 \text{ (Py}_{b}\text{-C3/5)}, 125.5 \text{ (CO}_{2}),$ 124.9 (Py_b-C3/5), 122.6 (BAr-C4), 121.9 (Py_a-C3/5), 73.2 (NCH_2Py_a) , 70.0 (NCH_2Py_b) , 28.1 $(d, {}^{1}J_{C.Rh} = 20.7 Hz$, RhCH₂CHO) ppm. (The signal for Py_a-C3/5 is obscured by one of the other signals). IR (CD₃CN): $\tilde{v} = 1694$, 1664 cm⁻¹.

(Formylmethyl- κC^I)(hydrogen carbonate)[N,N,N-tris(2-pyridylmethyl- κN)amine- κN [iridium(III) Tetraphenylborate (22aBPh₄): 22aBPh₄ was prepared by a procedure similar to that of 21aBPh₄, using 11aBPh4 instead of 9aBPh4. Complex 22aBPh4 was also obtained in a quantitative yield, according to ¹H NMR spectroscopy, but could not be isolated. ¹H NMR (500 MHz, CD₃CN, 298 K): $\delta = 9.46$ (t, ${}^{3}J_{H,H} = 4.8$ Hz, 1 H, IrCH₂CHO), 9.02 (d, ${}^{3}J_{H,H} =$ 5.5 Hz, 1 H, Py_a -H6), 8.95 (d, ${}^{3}J_{H,H} = 5.5$ Hz, 2 H, Py_b -H6), 7.82 $(dt, {}^{3}J_{H,H} = 7.9, {}^{4}J_{H,H} = 1.5 \text{ Hz}, 2 \text{ H}, Py_{b}-H4), 7.71 (dt, {}^{3}J_{H,H} =$ 7.7, ${}^{4}J_{H,H} = 1.5 \text{ Hz}$, 1 H, Py_a-H4), 7.44 (d, ${}^{3}J_{H,H} = 7.7 \text{ Hz}$, 2 H, Py_b-H3), 7.40 (t, ${}^3J_{H,H} = 6.6 \text{ Hz}$, 1 H, Py_a-H5), 7.33 (t, ${}^3J_{H,H} =$ 6.6 Hz, 2 H, Py_b-H5), 7.29 (m, 8 H, BAr-H2), 7.18 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1 H, Py_a-H3), 6.99 (t, ${}^{3}J_{H,H} = 7.3$ Hz, 8 H, BAr-H3), 6.84 $(t, {}^{3}J_{H,H} = 7.1 \text{ Hz}, 4 \text{ H}, \text{ BAr-H4}), 4.93 (d[AB], {}^{2}J_{H,H} = 15.3 \text{ Hz}, 2$ H, NC H_2 Py_b), 4.75 (d[AB], $^2J_{H,H} = 15.7$ Hz, 2 H, NC H_2 Py_b), 4.55 (s, 2 H, NC H_2 Py_a), 3.39 (d, $^3J_{H,H}$ = 4.8 Hz, 2 H, IrC H_2 CHO) ppm; 13 C{ 1 H} NMR (125 MHz, CD₃CN, 298 K): $\delta = 211.1$ (IrCH₂-CHO), 164.6 (q, ${}^{1}J$ (C,B)= 49.4 Hz, BAr-C1), 164.5 (Py_b -C2), 159.9 (Py_a-C2), 152.4 (Py_b-C6), 147.9 (Py_a-C6), 139.8 (Py_a-C4), 139.7 (Py_b-C4), 136.5 (BAr-C2), 126.4 (q, ${}^{3}J_{C,B} = 2.8$ Hz, BAr-C3), 125.9 (Py_b-C3/5), 125.6 (Py_b-C3/5), 124.7 (Py_a-C3/5), 122.6 (BAr-C4), 121.8 (Py_a-C3/5), 74.9 (NCH₂Py_a), 72.1 (NCH₂Py_b), 14.8 (IrCH₂CHO) ppm. ESI-MS (CO₂ saturated CH₃CN): 587 [M - BPh_4]⁺, 543 [M - CO₂ - BPh_4]⁺. IR (CH₃CN): \tilde{v} = 1663, 1635 cm^{-1} .

(Propene)[N,N,N-tris(2-pyridylmethyl- κN)amine- κN]-rhodium(1) Tetraphenylborate (23BPh₄): Propene was bubbled through a solution of [(ethene)₂RhCl]₂ (54 mg, 0.14 mmol) and NaHCO₃ (50 mg) in MeOH (3 mL) at room temperature for 30 minutes. Tpa (81 mg, 0.28 mmol) was then added, and the reaction mixture was stirred for 1 hour. After filtration the residue was washed with methanol (2 × 0.25 mL) and NaBPh₄ (85.5 mg, 0.25 mmol) was added to the filtrate. The reaction mixture was stirred for 1 hour, filtered, washed with MeOH (3 × 1 mL) and

dried in vacuo. Yield: 130 mg (69%). ¹H NMR (200 MHz, [D₆]acetone, 300 K): $\delta = 9.39$ (d, ${}^{3}J_{H,H} = 4.7$ Hz, 1 H, Py-H6), 8.33 (d, $^{3}J_{H,H} = 5.5 \text{ Hz}, 1 \text{ H}, \text{ Py-H6}), 8.03 (d, {}^{3}J_{H,H} = 5.3 \text{ Hz}, 1 \text{ H}, \text{ Py-H6})$ H6), 7.67 (m, 3 H, Py-H4), 7.35 (m, 11 H, BAr-H2 and Py-H3/5), 7.17 (m, 3 H, Py-H3/5), 6.92 (t, ${}^{3}J_{H,H} = 7.2$ Hz, 8 H, BAr-H3), 6.77 (t, ${}^{3}J_{H,H} = 6.9 \text{ Hz}$, 4 H, BAr-H4), 5.68 (d[AB], ${}^{2}J_{H,H} = 15.1 \text{ Hz}$, 1 H, NC H_2 Py), 5.57 (d[AB], ${}^2J_{H,H} = 15.1 \text{ Hz}$, 1 H, NC H_2 Py), 4.93 $(d[AB], {}^{2}J_{H,H} = 15.3 \text{ Hz}, 1 \text{ H}, NCH_{2}Py), 4.92 (d[AB], {}^{2}J_{H,H} =$ 15.5 Hz, 1 H, NCH₂Py), 4.63 (s, 2 H, NCH₂Py), 2.47 (m, 1 H, CH_2CHCH_3), 2.28 (dm, ${}^3J_{H,H} = 7.8 \text{ Hz}$, 1 H, CH_2CHCH_3), 1.93 $(dm, {}^{3}J_{H,H} = 9.8 \text{ Hz}, 1 \text{ H}, CH_{2}CHCH_{3}), 0.87 (dd, {}^{3}J_{H,H} = 6.2,$ $^{2}J_{H,Rh} = 1.3 \text{ Hz}, 3 \text{ H}, CH_{2}CHCH_{3}) \text{ ppm}; ^{13}C\{^{1}H\} \text{ NMR}$ (100 MHz, [D₆]acetone, 297 K): $\delta = 165.0$ (q, ${}^{1}J_{C,B} = 49.7$ Hz, BAr-C1), 164.1 (Py-C2), 163.5 (Py-C2), 159.3 (Py-C2), 152.4 (Py-C6), 151.9 (Py-C6), 151.2 (Py-C6), 138.3 (Py-C4), 137.5 (Py-C4), 137.4 (Py-C4), 137.1 (BAr-C2), 126.1 (m, BAr-C3), 125.5 (Py-C3/ 5), 125.2 (Py-C3/5), 124.7 (Py-C3/5), 123.7 (Py-C3/5), 123.4 (Py-C3/5), 122.4 (Py-C3/5), 122.4 (BAr-C4), 70.1 (NCH₂Py), 69.9 (NCH_2Py) , 64.6 (NCH_2Py) , 40.3 $(d, {}^{1}J_{C.Rh} = 19.7 Hz$, CH_2CHCH_3/CH_2CHCH_3), 33.8 (d, ${}^1J_{C,Rh}$ CH₂CHCH₃/CH₂CHCH₃), 20.6 (CH₂CHCH₃) ppm. ESI-MS (acetone): $435 [M - BPh_4]$, $393 [M - C_3H_6 - BPh_4]$, $301 [M - BPh_4]$ $C_3H_6 - CH_2C_5H_4N - BPh_4$].

(Peroxo- $\kappa^2 O^1$, O^2)[N,N,N-tris(2-pyridylmethyl- κ N)amine- κ N]rhodium(III) Tetraphenylborate (24BPh₄): Complex 23BPh₄ was exposed to air for 3 days. 24BPh₄ was obtained in > 90% yield, as determined by ¹H NMR spectroscopy. ¹H NMR (500 MHz, CD₃CN, 233 K): $\delta = 9.23$ (d, ${}^{3}J_{H,H} = 5.5$ Hz, 1 H, Py_a-H6), 8.37 (d, ${}^{3}J_{H,H} = 5.1 \text{ Hz}$, 2 H, Py_b-H6), 7.77 (dt, ${}^{3}J_{H,H} = 7.8$, ${}^{4}J_{H,H} =$ 1.6 Hz, 2 H, Py_b-H4), 7.65 (dt, ${}^{3}J_{H,H} = 7.8$, ${}^{4}J_{H,H} = 1.6$ Hz, 1 H, Py_a -H4), 7.34 (d, ${}^3J_{H,H} = 7.7 \text{ Hz}$, 2 H, Py_b -H3), 7.28 (m, 11 H, BAr-H2, Py-H5), 7.12 (d, ${}^{3}J_{H,H} = 7.7 \text{ Hz}$, 1 H, Py_a-H3), 6.98 (t, $^{3}J_{H,H} = 7.3 \text{ Hz}, 8 \text{ H}, \text{ BAr-H3}), 6.81 \text{ (t, } ^{3}J_{H,H} = 7.2 \text{ Hz}, 4 \text{ H}, \text{ BAr-H3})$ H4), 5.21 (d[AB], ${}^{2}J_{H,H} = 16.1 \text{ Hz}$, 2 H, NC H_{2} Py_b), 4.82 (d[AB], $^{2}J_{H,H} = 16.1 \text{ Hz}, 2 \text{ H}, \text{ NC}H_{2}\text{Py}_{b}), 4.53 \text{ (s, 2 H, NC}H_{2}\text{Py}_{a}) \text{ ppm;}$ 13 C{ 1 H} NMR (125 MHz, CD₃CN, 233 K): δ = 163.8 (q, $^{1}J_{C,B}$ = 49.2 Hz, BAr-C1), 162.8 (Py_b-C2), 159.8 (Py_a-C2), 152.5 (Py_a-C6), 150.1 (Py_b-C6), 139.4 (Py_b-C4), 139.1 (Py_a-C4), 135.6 (BAr-C2), 126.0 (q, ${}^{3}J_{C,B} = 2.7 \text{ Hz}$, BAr-C3), 125.4 (Py_b-C3/5), 123.4 (Py_b-C3/5), 122.1 (BAr-C4), 121.8 (Py_a-C3/5), 70.4 (NCH₂Py_b), 67.6 (NCH₂Py_a) ppm. (The signal for Py_a-C3/5 is obscured by one of the other signals). ESI-MS (CH₃CN): 425 $[M - BPh_4]^+$, 393 [M $- O_2 - BPh_4$, (467 [?]^{+ [22]}).

(Hydroperoxy)(hydroxy)[N,N,N-tris(2-pyridylmethyl-κN)-amine-κNlrhodium(III) Tetraphenylborate (25BPh₄): Complex 24BPh₄ was exposed to a N₂ atmosphere saturated with water for 3 days. 25BPh₄ was obtained in > 90% yield, as determined by 1 H NMR spectroscopy. 1 H NMR (200 MHz, CD₃CN, 300 K): δ = 8.76 (d, $^3J_{\rm H,H} = 5.9$ Hz, 1 H, Py_a-H6), 8.70 (d, $^3J_{\rm H,H} = 5.7$ Hz, 2 H, Py_b-H6), 7.86 (dt, $^3J_{\rm H,H} = 7.8$, $^4J_{\rm H,H} = 1.6$ Hz, 2 H, Py_a-H4), 7.5–7.3 (m, 5 H, Py_b-H3 and Py-H5), 7.28 (m, 8 H, BAr-H2), 7.11 (d, $^3J_{\rm H,H} = 7.8$ Hz, 1 H, Py_a-H3), 6.99 (t, $^3J_{\rm H,H} = 7.3$ Hz, 8 H, BAr-H3), 6.83 (t, $^3J_{\rm H,H} = 7.0$ Hz, 4 H, BAr-H4), 5.35 (d[AB], $^2J_{\rm H,H} = 15.5$ Hz, 2 H, NC H_2 Py_b), 4.75 (m, 4 H, NC H_2 Py_b and NC H_2 Py_a) ppm. ESI-MS (CH₃CN): 443 [M – BPh₄]⁺, 425 [M – H₂O – BPh₄]⁺, 410 [M – HO₂ – BPh₄]⁺, 393 [M – OH – O₂H – BPh₄]⁺, 300 [M – CH₂C₅H₄N – O₂H – H₂O – BPh₄]⁺.

Acknowledgments

This work was supported by the Netherlands Organization for Scientific Research (NWO-CW). We thank Johnson Matthey Ltd.

for a generous loan of RhCl₃·3H₂O. S. Thewissen, P. M. van Galen, and H. I. V. Amatdjais-Groenen are gratefully acknowledged for the ESI-MS measurements. Prof. Dr. P. Chen from the ETH Zürich is kindly acknowledged for allowing us to use the Finnigan TSQ 7000 mass spectrometer. Prof. Dr. Hans-Jörg Krüger (Universität Kaiserslautern, Germany) is kindly acknowledged for providing us with details on the synthesis of N₄Me₂.

- [1] [1a] H. Mimoun, M. M. P. Machirant, I. Seree de Roch, J. Am. Chem. Soc. 1978, 100(17), 5437-5444.
 [1b] G. Read, J. Mol. Catal. 1988, 44, 15-33.
 [1c] M. Bressan, F. Morandini, A. Morvillo, P. Rigo, J. Organomet. Chem. 1985, 280, 139-146.
 [1d] R. A. Sheldon, J. A. van Doorn, J. Organomet. Chem. 1975, 94, 115-129.
 [1e] H. Mimoun, Angew. Chem. 1982, 21, 734; Angew. Chem. Int. Ed. Engl. 1982, 94, 750-766.
 [1f] H. Mimoun, I. Seree de Roch, L. Sajus, Tetrahedron 1970, 26, 37-50.
- [2] D. V. Deubel, J. Sundermeyer, G. Frenking, J. Am. Chem. Soc. 2000, 122, 10101–10108.
- [3] [3a] G. Read, M. Urgelles, A. M. R. Galas, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1983, 911–913. [3b] L. Pandolfo, G. Paiaro, G. Valle, P. Ganis, Gazz. Chim. Ital. 1985, 115, 59–63.
- [4] [4a] M. Krom, R. G. E. Coumans, J. M. M. Smits, A. W. Gal, Angew. Chem. 2001, 113, 2164-2166; Angew. Chem. Int. Ed. 2001, 40(11), 2106-2108. [4b] M. Krom, R. G. E. Coumans, J. M. M. Smits, A. W. Gal, Angew. Chem. 2002, 114, 595-599; Angew. Chem. Int. Ed. 2002, 41(4), 575-579.
- [5] B. de Bruin, M. J. Boerakker, J. A. W. Verhagen, R. de Gelder, J. M. M. Smits, A. W. Gal, *Chem. Eur. J.* 2000, 6, 298-312.
- [6] [6a] B. de Bruin, J. A. Brands, J. J. J. M. Donners, M. P. J. Donners, R. de Gelder, J. M. M. Smits, A. W. Gal, A. L. Spek, *Chem. Eur. J.* 1999, 5, 2921–2936. [6b] B. de Bruin, R. J. N. A. M. Kicken, N. F. A. Suos, M. P. J. Donners, C. J. den Reijer, A. J. Sandee, R. de Gelder, J. M. M. Smits, A. W. Gal, A. L. Spek, *Eur. J. Inorg. Chem.* 1999, 1581–1592. [6c] B. de Bruin, Th. P. J. Peters, J. B. M. Wilting, S. Thewissen, J. M. M. Smits, A. W. Gal, *Eur. J. Inorg. Chem.* 2002, 2671.
- [7] The X-ray structures of three other iridium bis(ethene) complexes stabilized by tridentate nitrogen donor ligands have been reported: [7a] Y. Alvarado, O. Boutry, E. Gutiérrez, A. Monge, M. C. Nicasio, M. L. Poveda, P. J. Pérez, C. Ruíz, C. Bianchini, E. Carmona, *Chem. Eur. J.* 1997, 3, 860–873. [7b] J. S. Wiley, W. J. Oldham, Jr., D. M. Heinekey, *Organometallics* 2000, 19, 1670–1676. The third complex is stabilized by a tpa-type ligand. [6c]
- [8] *N,N'*-Dimethyl-2,11-diaza[3,3](2,6)pyridinophane = 3,11-dimethyl-3,11,17,18-tetraazatricyclo[11.3.1.1^{5,9}]octadeca-1(17), 5(18),6,8,13,15-hexaene.
- [9] [9a] H. Kelm, H. J. Kruger, Eur. J. Inorg. Chem. 1998, 1381–1385.
 [9b] T. Sciarone, J. Hoogboom, P. P. J. Schlebos, P. H. M. Budzelaar, R. de Gelder, J. M. M. Smits, A. W. Gal, Eur. J. Inorg. Chem. 2002, 457–464.
 [9c] S. Plentz Meneghetti, P. J. Lutz, J. Kress, Organometallics 2001, 20, 5050–5055.
- [10] [10a] H. Sakaba, C. Kabuto, H. Horino, M. Arai, Bull. Chem. Soc. Jpn. 1990, 63, 1822–1824. [10b] H. Kelm, H. J. Kruger, Inorg. Chem. 1996, 35, 3533–3540. [10c] W. O. Koch, V. Schunemann, M. Gerdan, A. X. Trautwein, H. J. Kruger, Chem. Eur. J. 1998, 4(7), 1255–1265. [10d] W. O. Koch, V. Schunemann, M. Gerdan, A. X. Trautwein, H. J. Kruger, Chem. Eur. J. 1998, 4(4), 686–691. [10e] H. J. Krüger, Chem. Ber. 1995, 128, 531–539. [10f] W. O. Koch, H. J. Kruger, Angew. Chem. Int. Ed. Engl. 1995, 34 (23/24), 2671–2674.
- [11] Samples as prepared required the reported reaction time for full conversion. The different reaction times found for different complexes could reflect differences in reactivity and/or differences in particle size distribution.
- $^{[12]}$ O_{β} and C_{β} (O2 and C2) are positioned above and below the O1-M-C1 plane: the displacement of O2 from this plane is +0.51 Å in $8aA^+$ and -0.47 Å in $8aB^+$, versus +0.49 Å in the

- 3-platina-1,2-dioxolane 1. The displacement of C2 is -0.26 Å in 8aA⁺ and +0.29 Å in 8aB⁺, versus -0.29 in the 3-platina-dioxolane.
- [13] This range is based on O-O distances in 48 crystal structures containing a M-O-O-C fragment (M = any metal); 4 outliers were not taken into account.
- [14] This range is based on O-C distances in 48 crystal structures containing a M-O-O-C fragment (M = any metal); 9 outliers were not taken into account.
- [15] Bzbpa = N-benzyl-N,N-bis(2-pyridylmethyl)amine.
- [16] B. de Bruin, J. A. W. Verhagen, C. H. J. Schouten, A. W. Gal, D. Feichtinger, D. A. Plattner, *Chem. Eur. J.* 2001, 7(2), 416–422.
- [17] For some examples see: [17a] J. C. M. Ritter, R. G. Bergman, J. Am. Chem. Soc. 1997, 119, 2580-2581. [17b] K. J. Del Rossi, X. X. Zhang, B. B. Wayland, J. Organomet. Chem. 1995, 504, 47-56.
- ^[18] Space group before and after transformation: *C2/c*. Cell dimensions before transformation: a = 35.8688(5), b = 10.7328(2), c = 24.2609(4) Å, $\beta = 116.666(1)^{\circ}$, V = 8346.4(2) Å³. Cell dimensions after transformation: a = 36.0362(2), b = 10.7760(1), c = 24.2975(2) Å, $\beta = 116.3883(4)^{\circ}$, V = 8452.2(2) Å³ (see Table 5).
- [19] A. N. J. Blok, P. H. M. Budzelaar, M. Krom, A. W. Gal, paper to be published.
- [20] Yields and reaction times highly depend on the presence of (small amounts of) water and protonation of the counterion, which both influence the acidity of the solution.
- [21] [21a] B. R. Flynn, L. Vaska, J. Am. Chem. Soc. 1973, 95(15), 5081-5083.
 [21b] T. Yoshida, D. L. Thorn, T. Okano, J. A. Ibers, S. Otsuka, J. Am. Chem. Soc. 1979, 101(15), 4212-4221.
 [21c] S. F. Hossain, K. M. Nicholas, C. L. Teas, R. E. Davis, J. Chem. Soc., Chem. Commun. 1981, 268-269.
- ^[22] The ESI-MS spectrum also shows a peak at m/z = 467, but since both the ¹H NMR and ¹³C NMR spectra (measured at 233 K) do not show any peaks that could stem from a second product, we have no explanation for the origin of this peak.

- [23a] See e.g.: [23a] H. Büning, J. Altman, H. Zorbas, W. Beck, J. Inorg. Biochem. 1999, 75(4), 269-279. [23b] K. Tajima, S. Oka, T. Edo, S. Miyake, H. Mano, K. Mukai, H. Sakurai, K. Ishizu, J. Chem. Soc., Chem. Commun. 1995, (15), 1507-1508. [23c]P. N. Balasubramanian, E. S. Schmidt, T. C. Bruice, J. Am. Chem. Soc. 1987, 109(25), 7865-7873.
- ^[24] R. Cramer, *Inorg. Synth.* **1990**, *28*, 86–88.
- [25] G. Anderegg, F. Wenk, Helv. Chim. Acta 1967, 50(243), 2330-2332.
- [26] H. Nagao, N. Komeda, M. Mukaida, M. Suzuki, K. Tanaka, Inorg. Chem. 1996, 35, 6809-6815.
- [27] [27a] F. Bottino, M. De Grazia, P. Finocchario, F. R. Fronczek,
 A. Mamo, S. Pappalardo, *J. Org. Chem.* 1988, 53, 3521–3529.
 [27b] H. J. Krüger, personal communication.
- [28] J. L. Herdé, J. C. Lambert, C. V. Senoff, *Inorg. Synth.* 1974, 15, 18–20.
- [29] M. Brookhart, B. Grant, A. F. Volpe Jr., Organometallics 1992, 11, 3920-3922.
- [30] P. T. Beurskens, G. Beurskens, M. Strumpel, C. E. Nordman, in: *Patterson and Pattersons* (Eds.: J. P. Glusker, B. K. Patterson, M. Rossi) Clarendon Press, Oxford, 1987, 356-367.
- [31] DIRDIF-96. A computer program system for crystal structure determination by Patterson methods and direct methods applied to difference structure factors: P. T. Beurskens, G. Beurskens, W. P. Bosman, R. de Gelder, S. García-Granda, R. O. Gould, R. Israël, J. M. M. Smits, Crystallography Laboratory, University of Nijmegen, The Netherlands, 1996.
- [32] A. L. Spek, Acta Crystallogr., Sect. A 1990, 46, C-34.
- [33] PLATON-93. Program for display and analysis of crystal and molecular structures: A. L. Spek, University of Utrecht, The Netherlands, 1995.
- [34] Immersion Lamp TQ 150 of Heraeus Noblelight GmbH; power consumption: 150 W. The experimental setup is available as Supporting Information.

Received July 23, 2002 [I02410]